ответ: потому что уравнение x²-5*x+36 не имеет действительных корней.
Объяснение:
Если уравнение a*x²+b*x+c=0 имеет действительные корни x1 и x2, то a*x²+b*x+c=a*(x-x1)*(x-x2), то есть в этом случае квадратный трёхчлен a*x²+b*x+c можно представить в виде произведения двух многочленов первой степени x-x1 и x-x2. В нашем же случае уравнение x²-5*x+36=0 имеет отрицательный дискриминант D=(-5)²-4*1*36=-119, поэтому это уравнение не имеет действительных корней. А значит, данный квадратный трёхчлен нельзя представить в виде произведения многочленов первой степени.
Строим гиперболу
Область определения:
Подставим у=кх в упрощенную функцию.
Очевидно, что при k=0 уравнение (*) решений не будет иметь.
1) Если x>0, то
2) Если x<0, то
Если объединить 1) и 2) случаи, то уравнение будет иметь хотя бы один корень.
Подставим теперь
Итак, при k=0 и k=±6.25 графики не будут иметь общих точек