Решение: Высота, опущенная на гипотенузу, делит прямоугольник на два прямоугольных треугольника, где два отрезка гипотенузы прямоугольного треугольника являются проекциями катетов основного прямоугольного треугольника и кроме того они являются катетами двух образовавшихся прямоугольников. Рассмотрим один из прямоугольных треугольников, где высота, опущенная на гипотенузу является катетом (72дм), катет прямоугольника (120дм) является гипотенузой получившегося прямоугольника. По теореме Пифагора найдём другой катет (c) одного из прямоугольников: c²=120²-72² c²=14400-5184 c²=9216 c=√9216=96 (дм) - это одна из проекций катета (первого образовавшегося прямоугольного треугольника) Найдём проекцию второго катета основного прямоугольника: для этого воспользуемся свойством высоты, проведённой к гипотенузе, "высота, проведённая к гипотенузе, есть средне-геометрическое между проекциями катетов гипотенузы." Обозначим проекцию второго катета за (d) Отсюда: 72=√(96*d) 72²=96d 5184=96d d=5184 : 96 d=54 (дм-проекция второго катета) Найдём гипотенузу основного прямоугольника. Она равна сумме двух проекций катетов прямоугольного треугольника: 96+54=150 (дм) Найдём второй катет основного прямоугольника по теореме Пифагора. Известен катет, равный 120дм; гипотенуза 150дм Второй катет (b) основного прямоугольника равен: b²=150²-120² b²=22500--14400 b²=8100 b=√8100=90 (дм) - длина второго катета
ответ: Второй катет равен 90дм; проекция второго катета 54дм
Например для такого рода задач: задача Найдите сумму всех двузначных чисел, которые при делении на 4 дают в остатке 3
наименьшее такое двузначное -- первый член прогрессии находим (в виду небольшого делителя) достаточно легко перебором 10- наименьшее двузначное число 10:4=2(ост 2) 11:4=2(ост 3) 11 - первый член прогрессии (либо оценивая по общей формуле с нахождения наименьшего(наибольшего) натурального удовлетворяющего неравенство так как при делении на 4 остаток 3 общая форма 4k+3 4k+3>=10 4k>=10-3 4k>=7 4k>=7:4 k>=1.275 наименьшее натуральное k=2 при k=2: 4k+3=4*2+3=11 11 -первый член )
далее разность прогрессии равна числу на которое делим т.е. в данном случае 4
далее ищем последний член прогрессии 99- наибольшее двузначное 99:4=24(ост3) значит 99 - последний член прогрессии (либо с оценки неравенством 4l+3<=99 4l<=99-3 4l<=96 l<=96:4 l<=24 24 - Наибольшее натуральное удовлетворяющее неравенство при l=24 : 4l+3=4*24+3=99 99- последний член прогрессии ) далее определяем по формуле количество членов
0,12512 = (³v0,12512)³.