Объяснение:
1)
arccos (2x-3)=\frac{\pi }{3}arccos(2x−3)=
3
π
Так как cos(arccosx) = x, |x| \leq 1cos(arccosx)=x,∣x∣≤1 , то
\begin{gathered}2x-3 = cos\frac{\pi }{3} ;\\2x-3 = \frac{1}{2} ;\\2x=0,5+3;\\2x=3,5;\\x=3,5:2;\\x=1,75.\end{gathered}
2x−3=cos
3
π
;
2x−3=
2
1
;
2x=0,5+3;
2x=3,5;
x=3,5:2;
x=1,75.
ответ: 1,75.
2)
\begin{gathered}arccos (x+\frac{1}{3} ) =\frac{2\pi }{3} ;x+\frac{1}{3} = cos \frac{2\pi }{3} ;x+\frac{1}{3} = -\frac{1}{2} ;x=-\frac{1}{2}-\frac{1}{3};x= -\frac{5}{6} .\end{gathered}
arccos(x+
3
1
)=
3
2π
;
x+
3
1
=cos
3
2π
;
x+
3
1
=−
2
1
;
x=−
2
1
−
3
1
;
x=−
6
5
.
ответ: -\frac{5}{6} .−
6
5
.
Два фермера, работая вместе, могут вспахать поле за 25 часов.
Производительность труда у первого и второго относятся как 2:5.
Фермеры планируют работать поочередно.
Сколько времени должен проработать второй фермер, чтобы поле было вспахано за 45,5 часов?
Пусть Х-производительность 1-го, У-производительность 2-го.
Система:
х+у=125
2х=5у
Последовательно:
2х+2у=2/25
2х-5у=0
7у=2/25 и у=2175
Тогда х=135
Итак, производительности мы нашли.
Поочередно фермеры работали 45,5 часа = 91/2 часа.
Пусть из этого времени 2-ой работал Т часов, тогда 1-ый работал 912-Т часов.
Уравнение:
(91/2-Т)⋅(1/35)+Т⋅(2/175)=1
имеет корень Т=17,5
Проверка.
1. проверим , что х+у=125
1/35+2/175=(70+175)/(175⋅35)=7/175=1/25
2. проверим, что 2х=3у:
2/35=5⋅2/175
3. Проверим уравнение при поочередной работе:
Если 2-ой работал 17,5 часов, то 1-ый работал 45,5-17,5=28 часов
28⋅135+(352)⋅(2175)=28/35+1/5=1
ОТВЕТ: 17,5
4cos^2x-1=0
4cos^2x=1
cos^2x=1/4
cosx=1/2
x=pi/3+2pi n
cosx=-1/2
х=2pi/3+2pi k
x=4pi/3+2pi k