Найти частное решение линейного неоднородного уравнения 2-го порядка.
Алгоритм решения неоднородного ДУ следующий:
1) Сначала нужно найти общее решение соответствующего однородного уравнения y``+y`-2y=0
Составим и решим характеристическое уравнение:
получены различные действительные корни, поэтому общее решение:
2) Теперь нужно найти какое-либо частное решение неоднородного уравнения
в правой части 4e²ˣ-2x+1. Значит предположу что частное решение неоднородного уравнения нужно искать в виде: y=Аe²ˣ+Bx+C
Найдём первую и вторую производную:
подставим в левую часть
и теперь приравняем к правой
отсюда составим систему
3) Запишем общее решение неоднородного уравнения:
4) теперь найдем частное решение
y(0)=3; y`(0)=5
решая систему получим
1. Доказать тождество
sinα +sin5α+sin7α +sin11α = 4cos2α*cos3α*sin6α
sinα +sin5α+sin7α +sin11α =(sin5α +sinα) +(sin11α+sin7α) =
2sin3α*cos2α +2sin9α*cos2α =2cos2α*(sin9α+sin3α)=
2cos2α*2sin6α*cos3α =4cos2α*cos3α*sin6α
- - - - - - -
2.Найдите значение выражения sin2α*cos5α -sinα*cos6α ,если sinα = -1/√3
- - -
Cначала упростим выражение:
sin2α*cos5α -sinα*cos6α =2sinα*cos∝*cos5α - sinα*cos6α =
sinα(2cos5α*cos∝ - sinα*cos6α )=sinα*(cos6∝+cos4α -cos6α ) =
sinα*cos4α =sinα*(1 - 2sin²2α) = sinα*( 1 -2*(2sinα*cosα)² )=
= sinα*( 1 -8sin²α*cos²α ) =sinα*( 1 -8sin²α*(1 -sin²α) ) = || sinα =-1/√3 ||
= (-1/√3)*( 1 -8*(-1/√3)² *(1 - (-1/√3)² ) = - 1/√3 *( 1- (8/3)*(2/3) ) = 7√3 / 27