1)49^(x+1)=7^-x
7^(2x+2)=7^-x
2x+2=-x
3x=-2
x=-2/3
ответ -2/3
22)Найдите угловой коэффициент касательной, проведенной к графику функции f(x)=x - ln x в точке с абсциссой х=3)
найдем уравнение касательной
f(3)=3-ln3
f'(x)=x-1/x
f'(3)=3-1/3=2/3
теперь само уравнение
y=3-ln3+2/3(x-3)=3-ln3+2x/3-2 =2x/3-ln3+1
ответ коэффициент равен y=kx+b
здесь к=2/3
3)
54*3^(3-x)*3^(x-3)>0
2*3^3*3^(3-x)*3^(x-3)>0
2*3^(6-x)*3 ^(x-3)>0
2*3^(6-x+x-3)>0
отудого х любое число!
4)
sin(pi+x)-cos(pi/2-x)= V3
-sinx-sinx=V3
-2sinx=V3
sinx= -V3/2
x=-pi/3+2pi*k
2sinxcosx-√3cosx=0
cosx(2sinx-√3)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√3/2⇒x=(-1)^n*π/3+πk,k∈Z
б)sin 2x=√2 cos x
2sinxcosx-√2cosx=0
cosx(2sinx-√2)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√2/2⇒x=(-1)^n*π/4+πk,k∈Z в)sin(0,5п+x)+ sin 2x=0
г)cos(0,5п+x)+ sin 2x=0
-sinx+2sinxcosx=0
-sinx(1-2cosx)=0
sinx=0⇒x=πn,n∈Z
cosx=1/2⇒x=+-π/3+2πk,k∈Z
д)sin 4x+√3 sin 3x+sin 2x=0
2sin3xcosx+√3sin3x=0
sin3x(2cosx+√3)=0
sin3x=0⇒3x=πn,n∈Z⇒x=πn/3,n∈Z
cosx=-√3/2⇒x=+-5π/6+2πk,k∈Z
е)cos 3x+sin 5x=sin x
cos3x+sin5x-sinx=0
cos3x+2sin2xcos3x=0
cos3x(1+2sin2x)=0
cos3x=0⇒3x=π/2+πn,n∈Z⇒x=π/6+πn/3,n∈Z
sin2x=-1/2⇒2x=(-1)^(k+1)*π/6+πk,k∈Z⇒x=(-1)^(n+1)*π/12+πk/2,k∈Z