Дискретная случайная величина задается своим рядом распределения: перечнем значений xi, которые она может принимать, и соответствующих вероятностей pi=P(X=xi). Количество значений случайной величины может быть конечным или счетным. Для определенности будем рассматривать случай i=1,n¯¯¯¯¯¯¯¯. Тогда табличное представление дискретной случайной величины имеет вид:
Xipix1p1x2p2……xnpn
При этом выполняется условие нормировки: сумма всех вероятностей должна быть равна единице
∑i=1npi=1
Графически ряд распределения можно представить полигоном распределения (или многоугольником распределения). Для этого на плоскости откладываются точки с координатами (xi,pi) и соединяются по порядку ломаной линией. Подробные примеры вы найдете ниже.
Числовые характеристики ДСВ
Математическое ожидание:
M(X)=∑i=1nxi⋅pi
Дисперсия:
D(X)=M(X2)−(M(X))2=∑i=1nx2i⋅pi−(M(X))2
Среднее квадратическое отклонение:
σ(X)=D(X)−−−−−√
Коэффициент вариации:
V(X)=σ(X)M(X)
.
Мода: значение Mo=xk с наибольшей вероятностью pk=maxipi.
1)а) у=х³+2. Все ординаты графика у = х³ увеличиваются на 2 Это параллельный перенос у=х³ вверх на 2 единицы (клеточки) Считаем точку (0;2) за начало координат и от неё Уходим вправо на1 клеточку и вверх на одну ( это как точка (1;1) у параболы у = х³) Уходим вправо на2 клеточки и вверх на 8 ( это как точка (2;8) у параболы у=х³) Уходим влево на1 клеточку и вниз на одну ( это как точка (-1;-1) у параболы у = х³) Уходим влево на2 клеточки и вниз на 8 ( это как точка (-2;-8) у параболы у=х³) б)у=х³-1 Все ординаты графика у = х³ уменьшаются на 1 Это параллельный перенос у=х³ вниз на 1 единицу (клеточку) Считаем точку (0;-1) за начало координат и от неё Уходим вправо на1 клеточку и вверх на одну ( это как точка (1;1) у параболы у = х³) Уходим вправо на2 клеточки и вверх на 8 ( это как точка (2;8) у параболы у=х³) Уходим влево на1 клеточку и вниз на одну ( это как точка (-1;-1) у параболы у = х³) Уходим влево на2 клеточки и вниз на 8 ( это как точка (-2;-8) у параболы у=х³) в) у=(х-1)³ В точке х =1 график этой функции ведет себя так же как у=х³ в начале координат (0;0)
Считаем точку (1;0) за начало координат и от неё Уходим вправо на1 клеточку и вверх на одну ( это как точка (1;1) у параболы у = х³) Уходим вправо на2 клеточки и вверх на 8 ( это как точка (2;8) у параболы у=х³) Уходим влево на1 клеточку и вниз на одну ( это как точка (-1;-1) у параболы у = х³) Уходим влево на2 клеточки и вниз на 8 ( это как точка (-2;-8) у параболы у=х³) 2)Выделим полный квадрат. х²-6х+5=(х²-2·х·3+3²-3²)+5=(х²-6х+9)-9+5=(х-3)²-4 Координата вершины параболы у= 5-6х+х² в точке (3;-4) Считая ее за начало координат строим параболу у=х² Уходим вправо на1 клеточку и вверх на одну ( это как точка (1;1) у параболы у = х²) Уходим вправо на2 клеточки и вверх на 4 ( это как точка (2;4) у параболы у=х²) Уходим влево на1 клеточку и вверх на одну ( это как точка (-1;1) у параболы у = х²) Уходим влево на2 клеточки и вверх на 4 ( это как точка (-2;4) у параболы у=х²)
Дискретная случайная величина задается своим рядом распределения: перечнем значений xi, которые она может принимать, и соответствующих вероятностей pi=P(X=xi). Количество значений случайной величины может быть конечным или счетным. Для определенности будем рассматривать случай i=1,n¯¯¯¯¯¯¯¯. Тогда табличное представление дискретной случайной величины имеет вид:
Xipix1p1x2p2……xnpn
При этом выполняется условие нормировки: сумма всех вероятностей должна быть равна единице
∑i=1npi=1
Графически ряд распределения можно представить полигоном распределения (или многоугольником распределения). Для этого на плоскости откладываются точки с координатами (xi,pi) и соединяются по порядку ломаной линией. Подробные примеры вы найдете ниже.
Числовые характеристики ДСВ
Математическое ожидание:
M(X)=∑i=1nxi⋅pi
Дисперсия:
D(X)=M(X2)−(M(X))2=∑i=1nx2i⋅pi−(M(X))2
Среднее квадратическое отклонение:
σ(X)=D(X)−−−−−√
Коэффициент вариации:
V(X)=σ(X)M(X)
.
Мода: значение Mo=xk с наибольшей вероятностью pk=maxipi.