М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
liyanborisova
liyanborisova
11.05.2023 04:26 •  Алгебра

Придумать задачу на алгебраические выражения

👇
Открыть все ответы
Ответ:
Gykplhgv
Gykplhgv
11.05.2023

а) 4x² - 4x - 15 < 0

D = b² - 4ac = 16 + 4*4*15 = 16 + 240 = 256

x₁ = (-b + √D) / 2a = (4 + 16) / 8 = 20 / 8 = 2,5

x₂ = (-b - √D) / 2a = (4 - 16) / 8 = -12 / 8 = -1,5

(x - 2,5)(х + 1,5) < 0

{ x < 2,5

{ x < -1,5

ответ: (-1,5; 2,5)

б) x² - 81 > 0

(x - 9)(x + 9) > 0

{ x > -9

{ x > 9

ответ: (-9; 9)

в) x² < 1,7х

x² - 1,7х < 0

х(x - 1,7) < 0

{ x < 0

{ x < 1,7

ответ: (0; 1,7)

г) x( x + 3) - 6 < 3 (x + 1)

x² + 3x - 6 - 3x - 3 < 0

x² - 9 < 0

(x - 3)(x + 3) < 0

{ x < -3

{ x < 3

ответ: (-3; 3)

4,7(7 оценок)
Ответ:
Пакмен007
Пакмен007
11.05.2023

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

4,6(78 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ