ответ: 1004 нуля, 4000 троек, 4001 единица.
Найдём число цифр 3.
Для этого удобно применить метод индукции. Пусть во всех числах От 1 до 10^k-1 , то есть k значное, есть x цифр 3. Найдём сколько цифр 3 находится во всех числах до 10^(k+1)-1 (k+1 значное) . Поскольку у нас есть всего 10(k+1)-ых (0-9) разрядов, а один из этих разрядов соответствует цифре 3, то общее число троек равно : 10*x +10^(k+1)
Среди чисел от 0 до 9 только одна тройка. Тогда общее число троек от 0 до 99 :10*1 +10=20. От 0 до 999 : 10*20+10^2=300 .
От 0 до 9999 : 10*300 +1000=4000.
Таким образом от 1 до 10000 : 4000 цифр 3. Для цифры 1 тот же самый принцип, что и с цифрой 3, только учитываем число 10000 , таким образом : 4001 единица. Для нулей все немного сложнее. Нужно учитывать нули при пустых разрядах. Например : 4029. При учете этих нулей можно легко ошибиться. Но я предлагаю использовать интересную обходную дорогу. Всего в числах от 0 до 9999: 4000 цифр : 1,2,3...9 . Это понятно из вышеуказанного алгоритма. А теперь посчитаем сколько всего в числах от 0 до 9999 вообще всех цифр! Всего 10 однозначных, 90 двузначных , 900 трехзначных и 9000 четырехзначных. Таким образом общее число цифр :10 +90*2 +900*3 +9000*4 =38890
Таким образом цифру 0 написали :
38890 - 4000*9 = 2890
В числах от 1 до 10000 : 2893
ответ: Нет.
Из условия следует, что f(x) = (x – a)(x – b), где a ≠ b.
Пусть искомый многочлен f(x) существует.
Тогда, очевидно f(f(x)) = (x – t1)²(x – t2)(x – t3).
Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1.
Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).
То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней
399 600 но я не уверен
Объяснение:
100×999=99 600
99 600×4=399 600