Я буду рассуждать следующим образом:
1. Корни, которые видно сразу:
x=0, y=1 (т.к. 0!=1 по определению факториала)
x=0, y=-1
x=1, y=1
x=1, y=-1
Факториала из отрицательного числа не существует, следовательно, все x >=0.
2. Других корней нет, так как и левая, и правая части возрастают
Рассмотрим f(x)=x! и g(x)=y^2
g(x) - это парабола, наклоненная на 90 градусов, т.е. ветви направлены вправо.
f(x)=x!~x^x*ln(x) по ф-ле Стирлинга, т.е. возрастает быстрее любой степенной функции, т.е. заведомо быстрее чем y^2. Это можно доказать, рассмотрев производные этих функций, либо просто на графике показать. Следовательно, точек пересечения графики этих функций кроме вышеназванных не имеют.
Функция же f1(x)=1!+2!+...+x! возрастает ещё быстрее, чем x!, следовательно, других корней у этого уравнения нет.
tg20°*tg40°*tg60°*tg80°=
=tg20°*(tg60-20°)*tg60°*tg(60°+20°)=
= [tg20°*tg(60°-20°)tg(60°+20°)]*tg60°=
=[tg20°*((sin60°-20°)*sin(60°+20°)/(cos(60°-20°)cos(60°+20°))]*√3 =
=[tg20°*(√3/2 *cos20° -1/2 * sin20°)(√3/2 *cos20° +1/2 * sin20°) :
(1/2*cos20°+√3/2 *sin20°)(1/2*cos20°-√3/2 *sin20°)]*√3 =
=[tg20°*(3/4*cos²20°-1/4sin²20°)/(1/4*cos20°-3/4sin20°)]*√3 =
=[(sin20°/cos20°)*(3cos²20°-sin²20°)/(cos²20°-3sin²20°)]*√3=
=[(3cos²20°*sin20°-sin³20°)/(cos³20°-3sin²20°cos20°)]*√3=
=(sin3*20°)/cos(3*20°)*√3= (sin60°)/(cos60°)*√3 = tg60°*√3 =√3*√3=3
ответ: с4=1/3, см фото.
Объяснение: