М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
rolleck
rolleck
07.05.2020 05:59 •  Алгебра

Бассейн наполняется двумя трубами действующими одновременно за 2 часа. за сколько часов может наполнить бассеин первая труба если она действуя одна наполняет бассеин на 3 часа быстрее, чем вторая.

👇
Ответ:
gggggguuu
gggggguuu
07.05.2020

1:2=1/2 часть бассейна наполняют обе трубы за 1 час

Пусть х часов - то время, за которое может наполнить бассейн первая труба, тогда вторая труба наполняет бассейн за (х+3) часов. За 1 час работы первая труба наполнит 1/х часть бассейна, вторая - 1/(х+3), а обе - 1/х+1/(х+3) или 1/2 бассейна. Составим и решим уравнение:

1/х+1/(х+3)=1/2  |*2x(x+3)

2x+6+2x=x^2+3x

x^2+3x-4x-6=0

x^2-x-6=0

по теореме Виета:

х1=3; х2=-2<0 (не подходит)

ответ: первая труба может наполнить бассейн за 3 часа.

4,6(47 оценок)
Открыть все ответы
Ответ:
Egorjava
Egorjava
07.05.2020

Объяснение:

В основе метода математической индукции (ММИ) лежит принцип математической индукции: утверждение $P(n)$ (где $n$ - натуральное число) справедливо при $\forall n \in N$, если:

Утверждение $P(n)$ справедливо при $n=1$.

Для $\forall k \in N$ из справедливости $P(k)$ следует справедливость $P(k+1)$.

Доказательство с метода математической индукции проводится в два этапа:

База индукции (базис индукции). Проверяется истинность утверждения при $n=1$ (или любом другом подходящем значении $n$)

Индуктивный переход (шаг индукции). Считая, что справедливо утверждение $P(k)$ при $n=k$, проверяется истинность утверждения $P(k+1)$ при $n=k+1$.

Метод математической индукции применяется в разных типах задач:

Доказательство делимости и кратности

Доказательство равенств и тождеств

Задачи с последовательностями

Доказательство неравенств

Нахождение суммы и произведения

4,8(50 оценок)
Ответ:
asdx1984
asdx1984
07.05.2020

Xi        0         1/3         2/3          1  

Pi       1/8        3/8        3/8        1/8

M[X]=1/2; D[X]=1/12; p=0,875.

Объяснение:

Частота появления события А является случайной величиной, обозначим её через X.

Так как грань с нечётным количеством очков может выпасть 0, 1, 2 или 3 раза, то частота появления принимает значения 0, 1/3, 2/3 и 1. При этом так как на игральной кости 3 грани с нечётным количеством очков и 3 - с чётным, то вероятность события А в одном опыте (то есть при одном бросании кости) равна 3/6=1/2. Найдём соответствующие вероятности:

P0=1/2*1/2*1/2=1/8; P1=3*1/2*1/2*1/2=3/8; P2=3*1/2*1/2*1/2=3/8; P3=1/2*1/2*1/2=1/8.

Проверка: p0+p1+p2+p3=1, так что вероятности найдены верно. Составляем закон распределения частоты появления события А:

Xi        0          1/3        2/3          1  

Pi       1/8        3/8        3/8        1/8

Математическое ожидание M[X]=∑Xi*Pi=1/2; дисперсия D[X]=∑(Xi-M[X])²*Pi=1/12. Пусть событие А1 заключается в том, что событие A появится хотя бы в одном испытании. Для нахождения вероятности P(A1) рассмотрим противоположное ему событие B1, которое заключается в том, что грань с нечётным количеством очков не появится ни при одном броске. Так как события A1 и B1 - независимые и притом образуют полную группу, то P(A1)+P(B1)=1, откуда P(A1)=1-P(B1). А так как P(B1)=1/2*1/2*1/2=1/8, то P(A1)=1-1/8=7/8=0,875.

4,4(68 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ