Объяснение:
В основе метода математической индукции (ММИ) лежит принцип математической индукции: утверждение $P(n)$ (где $n$ - натуральное число) справедливо при $\forall n \in N$, если:
Утверждение $P(n)$ справедливо при $n=1$.
Для $\forall k \in N$ из справедливости $P(k)$ следует справедливость $P(k+1)$.
Доказательство с метода математической индукции проводится в два этапа:
База индукции (базис индукции). Проверяется истинность утверждения при $n=1$ (или любом другом подходящем значении $n$)
Индуктивный переход (шаг индукции). Считая, что справедливо утверждение $P(k)$ при $n=k$, проверяется истинность утверждения $P(k+1)$ при $n=k+1$.
Метод математической индукции применяется в разных типах задач:
Доказательство делимости и кратности
Доказательство равенств и тождеств
Задачи с последовательностями
Доказательство неравенств
Нахождение суммы и произведения
Xi 0 1/3 2/3 1
Pi 1/8 3/8 3/8 1/8
M[X]=1/2; D[X]=1/12; p=0,875.
Объяснение:
Частота появления события А является случайной величиной, обозначим её через X.
Так как грань с нечётным количеством очков может выпасть 0, 1, 2 или 3 раза, то частота появления принимает значения 0, 1/3, 2/3 и 1. При этом так как на игральной кости 3 грани с нечётным количеством очков и 3 - с чётным, то вероятность события А в одном опыте (то есть при одном бросании кости) равна 3/6=1/2. Найдём соответствующие вероятности:
P0=1/2*1/2*1/2=1/8; P1=3*1/2*1/2*1/2=3/8; P2=3*1/2*1/2*1/2=3/8; P3=1/2*1/2*1/2=1/8.
Проверка: p0+p1+p2+p3=1, так что вероятности найдены верно. Составляем закон распределения частоты появления события А:
Xi 0 1/3 2/3 1
Pi 1/8 3/8 3/8 1/8
Математическое ожидание M[X]=∑Xi*Pi=1/2; дисперсия D[X]=∑(Xi-M[X])²*Pi=1/12. Пусть событие А1 заключается в том, что событие A появится хотя бы в одном испытании. Для нахождения вероятности P(A1) рассмотрим противоположное ему событие B1, которое заключается в том, что грань с нечётным количеством очков не появится ни при одном броске. Так как события A1 и B1 - независимые и притом образуют полную группу, то P(A1)+P(B1)=1, откуда P(A1)=1-P(B1). А так как P(B1)=1/2*1/2*1/2=1/8, то P(A1)=1-1/8=7/8=0,875.
1:2=1/2 часть бассейна наполняют обе трубы за 1 час
Пусть х часов - то время, за которое может наполнить бассейн первая труба, тогда вторая труба наполняет бассейн за (х+3) часов. За 1 час работы первая труба наполнит 1/х часть бассейна, вторая - 1/(х+3), а обе - 1/х+1/(х+3) или 1/2 бассейна. Составим и решим уравнение:
1/х+1/(х+3)=1/2 |*2x(x+3)
2x+6+2x=x^2+3x
x^2+3x-4x-6=0
x^2-x-6=0
по теореме Виета:
х1=3; х2=-2<0 (не подходит)
ответ: первая труба может наполнить бассейн за 3 часа.