Найдите наименьшее целое решение неравенства: найти область определения неравенства, затем решить неравенство методом интервалов, на рисунке числовой оси ставить знаки плюс –минус только там, где неравенство определено.
Без графиков можно так. Если (x₀,y₀) - какое-нибудь решение и |x₀|≠|y₀|, то (-x₀,-y₀), (y₀,x₀), (-y₀,-x₀) - еще 3 различных решения. Значит, чтобы было 2 решения, должно быть x₀=y₀, либо x₀=-y₀. 1) Если x₀=y₀, то |x₀|=1/2=|y₀|, откуда а=1/2. Из неравенства |x+y|≤|x|+|y|≤√(2(x²+y²)) верного для всех х,у при а=1/2 получаем 2-|x|-|у|≤|x|+|y|≤1, т.е. |x|+|y|=1. Подставляя это во второе уравнение системы, получим 4 точки, из которых подходят только две: (1/2;1/2) и (-1/2;-1/2). Т.е. при а=1/2 система действительно имеет только 2 решения. 2) Если x₀=-y₀, то |x₀|=1=|y₀|, откуда а=2. Из неравенства 2|x|=|(x+y)+х+(-у)|≤|x+у|+|x|+|y|=2, следует что |x|≤1 и аналогично |y|≤1, а значит x²+y²=2 может быть только если |x|=1 и |y|=1. Из 4 точек подходят только две (-1;1) и (1;-1), значит при а=2 система тоже имеет только 2 решения. Итак, ответ: а∈{1/2; 2}.
у=2(х-2)*-1
у=(2х-4)*-1
у=-2х+4
f(x)=-2x+4 - линейная функция, график - прямая
Область определения D(f) x∈R (множество всех действительных чисел)
Множество значений E(f) y∈R я
Нет максимума и минимума, непериодическая (непрерывна), ни четная, ни нечетная.
k=-2 => k<0 - функция убывающая, график образует тупой угол с положительным направлением оси 0Х.
График строится по 2-м точкам.
Можно найти точки пересечения графика с осями координат и построить график по ним.
Пересечение с осью 0Х: х=0 => y=-2*0+4=4 (0;4)
Пересечение с осью 0У: y=0 => х=-4/-2=2 (2;0)
Объяснение:
вот ответ чеееккк