1) (a - b)² = a² - 2ab + b²
(2х - 1)² = 16
(2х)² - 2 · 2х · (-1) + (-1)² = 16
4х² + 4х + 1 - 16 = 0
4х² + 4х - 15 = 0
D = b² - 4ac = 4² - 4 · 4 · (-15) = 16 + 240 = 256
√D = √256 = 16
х₁ = (-4-16)/(2·4) = (-20)/8 = -2,5
х₂ = (-4+16)/(2·4) = 12/8 = 1,5
ответ: (-2,5; 1,5).
3) (a + b)² = a² + 2ab + b²
25 - (5х + 1)² = 0
25 - ((5х)² + 2 · 5х · 1 + 1²) = 0
25 - (25х² + 10х + 1) = 0
25 - 25х² - 10х - 1 = 0 (умножим обе части уравнения на (-1))
25х² + 10х + 1 - 25 = 0
25х² + 10х - 24 = 0
D = b² - 4ac = 10² - 4 · 25 · (-24) = 100 + 2400 = 2500
√D = √2500 = 50
х₁ = (-10-50)/(2·25) = (-60)/50 = -1,2
х₂ = (-10+50)/(2·25) = 40/50 = 0,8
ответ: (-1,2; 0,8).
(x+2)(3-x)=0
-x²+x+6=0
x²-x-6=0 D=26
x₁=3 x₂=-2
S=∫³₋₂(-x₂+x+6)dx=(-x³/3+x²/2+6x) |³₋₂=
-3³/3+3²/2+6*3-((-2)³/3+(-2)²/2+6*(-2))=-9+4¹/₂+18-(8/3+2-12)=
=13¹/₂-(-7¹/₃)=20⁵/₆≈20,8(3) (кв. ед.).
2) y=9-x² y=7-x y=0 s-?
9-x²=7-x
x²-x-2=0 D=9
x₁=2 x₂=-1
9-x²=0
x²=9
x₁=-3 x₂=3
7-x=0
x=7 ⇒
Обшая площадь состоит из четырёх площадей:
9-x² 7-x 9-x² 0
-3-1237
S=∫⁻¹₋₃(9-x²)dx+∫²₋₁(7-x)dx+∫³₂(9-x²)dx+∫⁷₃ (0)dx=
=(9x-x³/3) |⁻¹₋₃+(7x-x²/2) |²₋₁+(9x-x³/3) |³₂=
=(-9+1/3+27-9)+(14-2+7+1/2)+(27-9-18+8/3)=9¹/₃+19¹/₂+2²/₃=31¹/₂.