М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Alex171810
Alex171810
10.04.2022 02:59 •  Алгебра

Смешали 30%-ый и50%-ый раствор кислоты и получили 45%-ый раствор. найдите отношение массы 30%-ого к массе 50%-ого раствора, взятых первоначально

👇
Ответ:
pudova20001katya
pudova20001katya
10.04.2022

Решение во вложении. Другими не умею


Смешали 30%-ый и50%-ый раствор кислоты и получили 45%-ый раствор. найдите отношение массы 30%-ого к
4,7(72 оценок)
Открыть все ответы
Ответ:
rafik321
rafik321
10.04.2022

3х-у=3, 2. 2х-3у=1, 3. 2х+у=1, 4. х+у=6,

3х-2у=0. 3х+у=7. 5х+2у=0. 5х-2у=9.

5. х+5у=7, 6. х+у=7, 7. 4х-3у=-1, 8. х+2у=-2,

3х+2у=-5. 5х-7у=11. х-5у =4. 3х-у=8.

9. 2х-5у=-7, 10. х-у=3, 11. 3х-5у=16, 12. 2х+3у=-7,

х-3у=-5. 3х+4у=2. 2х+у=2. х-у=4.

13. 2х+5у=-7, 14. х-3у=8, 15. 2х-3у=5, 16. х-4у=-1,

3х-у=15. 2х-у=6. х-6у=-2. 3х-у=8.

17. 5х-4у=12, 18. 6х+у=5, 19. 2х-3у=11, 20. х-6у=-2,

х-5у=-6. 2х-3у=-5. 5х+у=2. 2х+3у=11.

21. 3х-2у=16, 22. 2х+3у=3, 23. 4х-2у=-6, 24. 3х+2у=8,

4х+у=3. 5х+6у=9. 6х+у==11. 2х+6у=10.

25. 5х+у==14, 26. 3х-2у=5, 27. х+4у=7, 28. 2х-3у=5,

3х-2у=-2. 2х+5у=16. х-2у=-5. 3х+2у=14.

29. х-2у=7, 30. 4х-6у=26, 31. х+3у=7, 32. 8х+3у=-21,

х+2у=-1. 5х+3у=1. х+2у=5. 4х+5у=-7.

33. х-2у=8, 34. 8х+2у=11, 35. 2х-у=13, 36. 7х+3у=1,

х-3у=6. 6х-4у=11. 2х+3у=9. 2х-6у=-10.

37. 2х+3у=10, 38. 3х-2у=5, 39. 2х+у=-5, 40. 2х+3у=1,

х-2у=-9. 5х+4у=1. х-3у=-6. 6х-2у=14.

4,6(94 оценок)
Ответ:
historican
historican
10.04.2022
решения системы подстановки алгебраического сложения.

Алгоритмы и примеры решения системы уравнений:

Алгоритм решения системы линейных уравнений подстановки:

1. Выбрать одно уравнение (лучше выбирать то, где числа меньше) и выразить из него одну переменную через другую, например, Х через У. (можно и У через Х) . 2. Полученное выражение подставить вместо соответствующей переменной в другое уравнение. Таким образом, у нас получится линейное уравнение с одной неизвестной. 3. Решаем полученное линейное уравнение и получаем решение. 4. Подставляем полученное решение в выражение, полученное в первом пункте, получаем вторую неизвестную из решения. 5. Выполнить проверку полученного решения.

Пример

Решить систему уравнений: {Х+2*У =12{2*Х-3*У=-18

Решение: 1. Из первого уравнения данной системы выражаем переменную Х. Имеем Х= (12 -2*У) ; 2. Подставляем это выражение во второе уравнение, получаем 2*Х-3*У=-18; 2*(12 -2*У) – 3*У = -18; 24 – 4*У– 3*У = -18;

3. Решаем полученное линейное равнение: 24 – 4У – 3*У =-18; 24-7*У =-18; -7*У = -42; У=6;

4. Подставляем полученный результат в выражение, полученное в первом пункте. Х= (12 -2*У) ; Х=12-2*6 = 0; Х=0;

5. Проверяем полученное решение, для этого подставляем найденные числа в исходную систему. {Х+2*У=12;{2*Х-3*У=-18;{0+2*6 =12;{2*0-3*6=-18;{12 =12;{-18=-18;

Получили верные равенства, следовательно, мы правильно нашли решение.

ответ: (0,6)

Алгоритм решения алгебраического сложения

Алгоритм решения системы линейных уравнений с двумя неизвестными сложения.

1. Если требуется, путем равносильных преобразований уравнять коэффициенты при одной из неизвестных переменных в обоих уравнениях. 2. Складывая или вычитая полученные уравнения получить линейное уравнение с одним неизвестным 3. Решить полученное уравнение с одним неизвестным и найти одну из переменных. 4. Подставить полученное выражение в любое из двух уравнений системы и решить это уравнение, получив, таким образом, вторую переменную. 5. Сделать проверку решения.

Пример решения алгебраического сложения

Для большей наглядности решим сложения следующую систему линейных уравнений с двумя неизвестными:

{3*Х + 2*У = 10;{5*Х + 3*У = 12;

Так как, одинаковых коэффициентов нет ни у одной из переменных, уравняем коэффициенты у переменной у.

Для этого умножим первое уравнение на три, а второе уравнение на два.

{3*Х+2*У=10 |*3{5*Х + 3*У = 12 |*2

Получим следующую систему уравнений: {9*Х+6*У = 30;{10*Х+6*У=24;

Теперь из второго уравнения вычитаем первое.

Приводим подобные слагаемые и решаем полученное линейное уравнение. 10*Х+6*У – (9*Х+6*У) = 24-30; Х=-6;

Полученное значение подставляем в первое уравнение из нашей исходной системы и решаем получившееся уравнение. {3*(-6) + 2*У =10;{2*У=28; У =14;

Получилась пара чисел Х=6 и У=14.

Проводим проверку.

Делаем подстановку. {3*Х + 2*У = 10;{5*Х + 3*У = 12;{3*(-6) + 2*(14) = 10;{5*(-6) + 3*(14) = 12;{10 = 10;{12=12;

Как видите, получились два верных равенства, следовательно, мы нашли верное решение. ответ: (6, 14)

4,5(36 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ