Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.
Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.
Свойство № 1
Произведение степеней
Запомните!
При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.
am · an = am + n, где «a» — любое число, а «m», «n» — любые натуральные числа.
Данное свойство степеней также действует на произведение трёх и более степеней.
Примеры.
Упростить выражение.
b · b2 · b3 · b4 · b5 = b 1 + 2 + 3 + 4 + 5 = b15
Представить в виде степени.
615 · 36 = 615 · 62 = 615 · 62 = 617
Представить в виде степени.
(0,8)3 · (0,8)12 = (0,8)3 + 12 = (0,8)15
Важно!
Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями. Оно не относится к их сложению.
Нельзя заменять сумму (33 + 32) на 35. Это понятно, если
посчитать (33 + 32) = (27 + 9) = 36 , а 35 = 243
Свойство № 2
Частное степеней
Запомните!
При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.
aman = am − n, где «a» — любое число, не равное нулю, а «m», «n» — любые натуральные числа такие, что «m > n».
Примеры.
Записать частное в виде степени
(2b)5 : (2b)3 = (2b)5 − 3 = (2b)2
Вычислить. 113 · 4 2112 · 4 = 113 − 2 · 4 2 − 1 = 11 · 4 = 44
Пример. Решить уравнение. Используем свойство частного степеней.
38 : t = 34
t = 38 : 34
t = 38 − 4
t = 34
ответ: t = 34 = 81
Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.
Пример. Упростить выражение.
45m + 6 · 4m + 2 : 44m + 3 = 45m + 6 + m + 2 : 44m + 3 = 46m + 8 − 4m − 3 = 42m + 5
Пример. Найти значение выражения, используя свойства степени.
512 · 432 = 512 · 432 = 29 · 2225 = 29 + 225 = 21125 = 211 − 5 = 2 6 = 64
Важно!
Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.
Нельзя заменять разность (43 −42) на 41. Это понятно, если посчитать (43 −42) = (64 − 16) = 48, а 41 = 4
Будьте внимательны!
Источник: http://math-prosto.ru
решим уравнение 7+х+х^2=0
D=b^2-4ac=1-28<0, то есть решений у этого уравнения нет. следовательно, 7+х+х^2>0 при любых значениях х.
поскольку дробь стоит под знаком корня, её значение не должно быть отрицательным. поскольку мы уже доказали, что знаменатель всегда положительный, осталось найти значения х, при которых числитель меньше нуля.
решим неравенство
х^2-25<0
(х-5)(х+5)<0
ответ: -5<х<5