М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
matveizuikov
matveizuikov
29.03.2021 11:21 •  Алгебра

Функция функция задана формулой y=2x-15. Определите значение y если x =-2,5 ​


Функция функция задана формулой y=2x-15. Определите значение y если x =-2,5 ​

👇
Ответ:
ilyhan787228
ilyhan787228
29.03.2021
ответ:
-20
Обьяснение:
y=2x-15
y=2•(-2,5)-15
y=-5-15
y=-20
4,5(7 оценок)
Открыть все ответы
Ответ:
isabayeva
isabayeva
29.03.2021
Изобразите на координатной плоскости множество решений уравнения |y^2-x^2|=y-x

| y² - x² |= y - x   ;
| y -  x |*| y + x | = y - x  
необходимое ограничение :  y-x ≥ 0  ⇔ y ≥ x  ⇒ | y  -  x | =  y  -  x
( y - x )*| y + x | = y - x  ;
( y - x ) ( | y + x | -1) =0  ;
 
{  y ≥  x  ; ( y - x ) ( | y + x | -1) =0 ⇔{  y ≥  x ; [  y - x = 0 ;  y + x = -1 ; y + x = 1. ⇔
[  { y  ≥  x ;   y - x = 0 .   { y  ≥  x ; y   = - x  - 1 .  { y  ≥   x  ; y   = - x +1 . 
(равносильно  совокупности  трех систем  уравнений) .

Множество решений уравнения  |y^2-x^2|=y-x  →объединение  прямой  y =  x  и двух  лучей с началами  в точках  A(-1/2 ; -1/2) и  B(1/2;1/2)  точки 
пересечения  прямой y =  x соответственно с    y   = - x  - 1  и   y   = - x  + 1  ;
прямые   y  =  x   и   y   = - x  ± 1 перпендикулярны k₁*k₂  = 1 *(-1) = -1  ) .
4,5(60 оценок)
Ответ:
mrmrheik
mrmrheik
29.03.2021
y= \dfrac{2.5|x|-1}{|x|-2.5x^2} = \dfrac{2.5|x|-1}{-|x|(2.5|x|-1)}=- \dfrac{1}{|x|}

Строим гиперболу y=-\dfrac{1}{x} и затем верхнюю часть графика отобразить в нижнюю(отрицательную часть)

Область определения: \displaystyle \left \{ {{|x|\ne0} \atop {2.5|x|-1\ne0}} \right. ~~~\Rightarrow~~~~ \left \{ {{x\ne 0} \atop {x\ne \pm0.4}} \right.

Подставим у=кх в упрощенную функцию.

kx=- \dfrac{1}{|x|}              (*)

Очевидно, что при k=0 уравнение   (*) решений не будет иметь.

1) Если x>0, то kx^2=-1 и это уравнение решений не имеет при k>0(так как левая часть всегда положительно).

2) Если x<0, то kx^2=1 и при k<0 это уравнение решений не имеет.

Если объединить 1) и 2) случаи, то уравнение будет иметь хотя бы один корень.

Подставим теперь x=\pm0.4, имеем

k\cdot (-0.4)=- \dfrac{1}{0.4} \\ \\ k=6.25                                         k\cdot 0.4=- \dfrac{1}{0.4} \\ \\ k=-6.25

Итак, при k=0 и k=±6.25 графики не будут иметь общих точек

Постройте график функции у=2,5|х|-1/|х|-2,5х^2 и определитель,при каких значениях k прямая у=kx не и
4,4(8 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ