f(|2x+7|)>f(|x-3|)
Т.к. по условию функция y=f(x) убывает => большему значению аргумента соответствует меньшее значение функции =>
|2x+7| < |x-3|
Так как и левая, и правая части неравенства принимают только положительные значения, то возведем обе части неравенства в квадрат:
|2x+7|² < |x-3|²
(2x+7)² - (x-3)² < 0 слева стоит разность квадратов
(2x+7 - х +3)(2x+7 + x-3) < 0
(x + 10)(3x + 4) < 0
Найдем нули функции (x + 10)(3x + 4) с метода интервалов:
x + 10 - + +
-10-1 1/3
3x + 4 - - +
Видим, что ф-ция (x + 10)(3x + 4) < 0 когда x + 10 и 3x + 4 принимают противоположные по знаку значения,
т.е. на промежутке ( -10 ; - 1 1/3).
ответ: ( -10 ; - 1 1/3)
Задача : Абонент забыл последнюю цифру номера телефона и поэтому набирает её наугад. Определить вероятность того, что ему придётся звонить не более чем в 3 места.
Решение: Вероятность набрать верную цифру из десяти равна по условию 1/10. Рассмотрим следующие случаи:
1. первый звонок оказался верным, вероятность равна 1/10 (сразу набрана нужная цифра).
2. первый звонок оказался неверным, а второй - верным, вероятность равна 9/10*1/9=1/10 (первый раз набрана неверная цифра, а второй раз верная из оставшихся девяти цифр).
3. первый и второй звонки оказались неверными, а третий - верным, вероятность равна 9/10*8/9*1/8=1/10 (аналогично пункту 2).
Всего получаем P=1/10+1/10+1/10=3/10=0,3P=1/10+1/10+1/10=3/10=0,3 - вероятность того, что ему придется звонить не более чем в три места.
ответ: 0,3