М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Славик14102
Славик14102
08.11.2021 02:05 •  Алгебра

КОНТРОЛЬНАЯ РАБОТА ПО АЛГЕБРЕ.. 5. Побудуйте графік функції у =-x² - 2х + 3.
Знайдіть: 1) область визначення функції:
2) проміжок, на якому функція спадає,
3) найбільше та найменше значення функції
( )​

👇
Открыть все ответы
Ответ:
zige
zige
08.11.2021

Даны координаты вершин пирамиды:

А1 (-10; 6; 6), А2 (-2; 8; 2), А3 (5; -7; 4), А4 (-4; 10; 9).

Найти:

1) угол между ребрами А1А2 и А1А4.

Находим векторы А1А2 и А1А4.

А1А2 = (-2-(-10); 8-6; 2-6) = (8; 2; -4), модуль равен √(64+4+16) = √84 = 2√21.

А1А4 = (-4-(-10); 10-6; 9-6) = (6; 4; 3), модуль равен √(36+16+9) = √61.

Находим косинус угла (А1А2_А1А4):

cos (А1А2_А1А4) = (8*6+2*4+(-4)*3)/( 2√21*√61) = 44/(2√1281) = 22√1281/1281.

Угол (А1А2_А1А4) = arccos(22√1281/1281) = arccos 0,614679 = 0,90882 радиан или 52,0714 градуса.

2) уравнение прямой А1А2.

По точке А1 (-10; 6; 6) и вектору А1А2(8; 2; -4) составляем уравнение:

(x + 10)/8 = (y – 6)/2 = (z – 6)/(-4).

4,7(42 оценок)
Ответ:
Nessmikk13
Nessmikk13
08.11.2021

ОДЗ:

\left \{ {{x^2+2x-20} \atop{ {x^2+2x-2\neq1 }\atop{\frac{|x+4|-|x|}{x-1}0 }} \right.

Решаем каждое неравенство:

x^2+2x-20    ⇒   (x+1)^2-3 0   ⇒(x+1-\sqrt{3})(x+1+\sqrt{3})0

x\in (-\infty;-1-\sqrt{3}) \cup{-1+\sqrt{3};+\infty)

x^2+2x-2\neq 1    ⇒     x^2+2x-3\neq 0  ⇒     x\neq -3;  x\neq 1

\frac{|x+4|-|x|}{x-1}0  

Подмодульные выражения обращаются в 0 в точках

x=-4    и  x=0

Это точки делят числовую прямую на три промежутка.

Раскрываем знак модуля на промежутках:

(-∞;-4]

|x+4|=-x-4

|x|=-x

\frac{-x-4-(-x)}{x-1}0     ⇒     \frac{-4}{x-1}0    ⇒    x < 1

решение неравенства (-∞;-4]

(-4;0]

|x+4|=x+4

|x|=-x

\frac{x+4-(-x)}{x-1}0     ⇒     \frac{2x+4}{x-1}0    ⇒    x < -2 или  x > 1

решение неравенства (-4;-2)

(0;+∞)

|x+4|=x+4

|x|=x

\frac{x+4-x}{x-1}0     ⇒     \frac{4}{x-1}0    ⇒    x > 1

решение неравенства (1;+∞]

Объединяем  ответы трех случаев:

\frac{|x+4|-|x|}{x-1}0    при   x \in (-\infty;-2)\cup(1;+\infty)

ОДЗ:

\left \{ {{x\in (-\infty;-1-\sqrt{3}) \cup{-1+\sqrt{3};+\infty)} \atop{ {x\neq-3; x\neq 1 }\atop{ x \in (-\infty;-2)\cup(1;+\infty)}} \right.

x\in (-\infty;-3)\cup(-3;1-\sqrt{3}) \cup(1;+\infty)

Решаем неравенство:  log_{x^2+2x-2}\frac{|x+4|-|x|}{x-1}0

0=log_{x^2+2x-1}1

log_{x^2+2x-2}\frac{|x+4|-|x|}{x-1}log_{x^2+2x-2}1

Два случая:

если основание логарифмической функции >1, то она возрастает и большему значению функции соответствует большее значение аргумента

\left \{ {{x^2+2x-21} \atop {\frac{|x+4|-|x|}{x-1}1}} \right.     ⇒     \left \{ {{x^2+2x-30} \atop {\frac{|x+4|-|x|-x+1}{x-1}0}} \right.     ⇒           \left \{ {{x\in (-\infty;-3) \cup(1;+\infty)} \atop {x\in(-\infty;-4]\cup(1;5)}} \right.

второе неравенство решаем на промежутках  так:

(-∞;-4]

\frac{-x-4-(-x)-x+1}{x-1}0    ⇒    \frac{-3-x}{x-1}0   ⇒    \frac{x+3}{x-1}  ⇒ (-3;-1)

не принадлежат (-∞;-4]

на (-4;0]

\frac{x+4-(-x)-x+1}{x-1}0      ⇒      \frac{x+5}{x-1}0    ⇒    x < -5   или  x > 1

не принадлежат (-4;0]

(0;+∞)

\frac{x+4-x-x+1}{x-1}0      ⇒    \frac{5-x}{x-1}0    ⇒   \frac{x-5}{x-1}    ⇒x\in (1;5)

о т в е т  этого случая (1;5)

если основание логарифмической функции 0 < a < 1, то она убывает и большему значению функции соответствует меньшее значение аргумента

\left \{ {{0     ⇒     \left \{ {0      ⇒   \left \{ {{x\in (-3;-1-\sqrt{3}) \cup(-1+\sqrt{3};1)} \atop {x\in(-\infty;-4]\cup(-4;0]\cup(5;+\infty)}} \right.

второе неравенство решаем на промежутках так:

(-∞;-4]

\frac{-x-4-(-x)-x+1}{x-1}    ⇒    \frac{-3-x}{x-1}   ⇒    \frac{x+3}{x-1}0  ⇒

(-∞;-3)U(1;+∞)

о т в е т. (-∞;-4]

на (-4;0]

\frac{x+4-(-x)-x+1}{x-1}      ⇒      \frac{x+5}{x-1}    ⇒     -5 < x < 1

о т в е т.  (-4;0]

(0;+∞)

\frac{x+4-x-x+1}{x-1}      ⇒    \frac{5-x}{x-1}    ⇒   \frac{x-5}{x-1}0    ⇒x\in (0;1)\cup(5;+\infty)

о т в е т  этого случая (-3;-1-\sqrt{3})

С учетом ОДЗ получаем окончательный ответ:(-3;-1-\sqrt{3})\cup(1;5)

4,6(75 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ