М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
maks312017
maks312017
21.10.2021 18:30 •  Алгебра

чем сможите 1.Функция задана формулой y=7x-25 Определите
а) значение y если x=4,3
б) значение х при котором y=10
в)проходит ли график функции через точки А(2;-11) В(2;11) С(-2;11)
2.а)Посторойте график функции y=0,6х-1
б)Укажите графика,чему равно значение у,при x=0
3.найдите координаты точки пересечения графиков функции у=40х-21 и у= -11х+30​

👇
Ответ:
Vadik01K
Vadik01K
21.10.2021

нужнвлвлвлвогв

4,5(81 оценок)
Ответ:
11maksim11
11maksim11
21.10.2021

я сам незна

4,4(97 оценок)
Открыть все ответы
Ответ:

сумма n последовательных нечетных натуральных чисел при n>1

1+3+5+7+...+(2n-1)=n^2

Доказательство методом математической индукции

База индукции

n=2. 1+3=2^2

Гипотеза индукции

Пусть для n=k утверждение выполняется, т.е. выполняется

1+3+5+7+...+(2k-1)=k^2

Индукционный переход. Докажем, что тогда выполняется утверждение и для n=k+1, т.е, что выполняется

1+3+5+7+...+(2k-1)+(2K+1)=(k+1)^2

1+3+5+7+...+(2k-1)+(2K+1)=используем гипотезу МИ=k^2+(2k+1)=k^2+2k+1=используем формлу квадрату двучлена=(k+1)^2, что и требовалось доказать.

По методому математической индукции формула справедлива.

Число n^2 при n>1 zвляется составным, оно делится на 1,n,n^2.

А значит сумма n последовательных нечетных натуральных чисел при n>1 является составным числом. Доказано

4,8(60 оценок)
Ответ:
MihailBobr
MihailBobr
21.10.2021
Решим не стандартным

1 ученик - А
2 ученик - Б

Получаем:
А            Б
4             5
5             4
5             5
4             4

В итоге,существует расставить 2 ученикам 2 оценки (4 и 5).

А если прибавить к ним еще одного ученика - С. То:

А          Б          С
4          4           4
5          5           5
4          4           5
4          5           5
5          5           4
5          4           4
4          5           4
5          4           5

В итоге получаем

А что если, оставим тех же 2 учеников, но добавим 1 оценку - 3?

А вот что получим:

А                      Б
3                      3
4                      4
5                      5
3                      4
4                      3
4                      5
5                      4
3                      5
5                      3

В итоге, мы получили

Нет смысла, добавлять 3 ученика. Уже  и так можно увидеть закономерность.

В 1 раз, мы имели 2 ученика и 2 оценки, отметим это как:
(2,2)
В 2 раз, мы имели 3 ученика и 2 оценки, отметим это как:
(2,3)
В 3 раз, мы имели 2 ученика и 3 оценки, отметим это как:
(3,2)

А теперь, выведем формулу:
(a,b)=a^b - где a-число оценок, b-число учеников.

В итоге и получаем:
1 случай:
(2,2)=2^2=4
2 случай:
(2,3)=2^3=8
3 случай:
(3,2)=3^2=9

Теперь, вычислим наш случай в задаче. Есть 24 ученика = b, и 4 оценки=a (2,3,4,5).
Отсюда:
(a,b)=(4,24)=4^{24}=281474976710656

Второй

Для первого ученика существует 4 варианта:
2,3,4,5 
Для второго ученика существует 4 варианта на каждый вариант первого ученика.
То есть:
\dispaystyle 4\cdot 4=16 - варианта событий.

Для третьего ученика существует 4 варианта на каждый вариант второго ученика.
То есть:
16\cdot 4=64 - варианта событий.

И так далее. В итоге получаем, что для 24 учеников существует ровно:

4^{24}=281474976710656 - вариантов событий.
4,4(14 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ