Для острых углов известно соотношение sinα<α<tgα . α=1/(n+6) стремится к 0 при n->∞.
tg1/(n+6)>1/(n+6).
Исходный ряд сравним с рядом ,общий член которого 1/(n+6).Этот ряд расходящийся, так как его можно сравнить с расходящимся обобщённо-гармоническим рядом ∑1/n : lim (1/n)/(1/n+6)=1≠0 при n->∞ ⇒ оба ряда ∑1/n и ∑1/(n+6) расходятся.
Ряд ∑1/(n+6) является минорантным, а ряд ∑tg1/(n+6) мажорантным. Из расходимости минорантного ряда следует расходимость мажорантного. ⇒∑tg1/(n+6) - расходящийся ряд.
тут мы иммем дело с разницей квадрата под корнем. его надо уметь видеть.
в данном случе второе(минус перед два корней из семи).
И так 2√7 - в данном случае это у нас 2ab.
8 - это сума а в квадрате и б в квадрате.
то есть:
8 =
+ ![b^{2}](/tpl/images/0153/9777/0ed44.png)
2ab = 2√7
ab = √7
То есть нам нужно методом подбора подобрать такие числа, чтобы их сумма в квадрате была 8, а при умножении они давали корень из семи. (тут метод подбора ничего более просто нужны тренировки и практика для этого).
Я подобрала:
и
+
= 7 + 1 = 8
то есть
=
= |
- 1| (по модулю, модуль убираем, ибо
|![\sqrt{ 7} - 1| = \sqrt{7} - 1](/tpl/images/0153/9777/3b11d.png)
То есть:
ответ: -1.