формула из комбинаторики,
мы рассматриваем любое из 10 цифр, а формула для конкретной определенной цифры, поэтому
10*C₆⁴=
Кроме того остались другие два числа, принимающие любые значения, кроме той определенной цифры(9 из 10, в двух разных независимых местах) это 9²=81.
81*150=12150 вариаций
2) модератор подсказал, что число 011119 - не шестизначное, т.к. начинается с нуля, поэтому пусть будет две задачки. Кто знает, что имел в виду задававший вопрос, учитывал или нет этот факт про нули впереди? В одном мы не обращаем на это внимание, и это решение выше. Ниже обратим внимание и решим чуть иначе.
Сначала мы рассматривали числа от 0 до 999999, теперь рассмотрим числа от 100000 до 999999, так всё что ниже не шестизначные цифры. Мы отбросили числа ниже 100000, тоесть осталось ровно 90% от первоначальных чисел, т.к. это перебор всех возможных цифр, то распределение цифр и в самой последовательности от 0 до 999999 и в 100000 до 999999 равновероятны. Так и случайно взятые на угад 4 одинаковые цифры из 6, также равнораспределены на обоих этих отрезках непрерывной последовательности натуральных чисел. Отсюда можно сделать вывод, что нами полученный ответ в первой задаче умноженный на 90% и есть ответ на вторую задачу 12150*0.9=10935
Объяснение:
Одно число n, следующее за ним (n+1)
Разность квадратов двух последовательных натуральных чисел
(n+1)²-n²
(Из бо`льшего вычитаем меньшее, потому что по условию разности квадратов неотрицательны
Следующие два последовательных натуральных чисел это (n+2) и (n+3)
Разность квадратов следующих двух последовательных натуральных чисел
(n+3)²-(n+2)²
(Здесь тоже из бо`льшего вычитаем меньшее)
Сумма разностей квадратов по условию равна 10
Уравнение
((n+1)²-n²) + ((n+3)²-(n+2)²)=10
(n²+2n+1-n²)+(n²+6n+9-n²-4n-4)=10
2n+1+2n+5=10
4n=4
n=1
1; 2и 3; 4
(2²-1²)+(4²-3²)=10
3+7=10 - верно
Д - потому что 6=6,
ответ:Д