Соотношение параметров квадрата
Приведём формулы периметра Р и площади S квадрата через длину стороны а.
периметр квадрата Р равен учетверённому размеру его стороны а: Р = 4 * а;
площадь квадрата S равна квадрату его стороны а: S = a²;
периметр и площадь квадрата связаны между собой. так как в их формулах общий параметр - сторона квадрата: S = P² / 16.
Для понятного объяснения задачи увеличим по заданию его сторону в 3 раза.Тогда новая сторона квадрата станет а1 = 3 * а.
Вычисление увеличения периметра и площади квадрата
Чтобы узнать, как при этом изменились периметр и площадь квадрата, подставим в формулы Р и S вместо "а" новое значение стороны "а1". Тогда:
Р1 = 4 * а1 = 4 * (3 * а ) = 12 * а;
S1 = а1² = (3 * а)² = 9 * а².
После того, как выразили новый периметр Р1 и площадь S1 через начальное значение стороны "а", можно ответить на вопрос задания:
для вычислений используем написанные выше формулы для площади S и периметра P;
чтобы узнать, во сколько раз увеличится периметр квадрата, нужно разделить Р1 на Р;
чтобы узнать, во сколько раз увеличится площадь квадрата, нужно разделить S1 на S.
Согласно выше сказанного, ответим на вопросы задания:
во сколько раз увеличился периметр квадрата, для чего разделим (Р1 : Р) = (12 * а) : (4 * а) = 3 (раза);
во сколько раз увеличится площадь квадрата, для чего разделим (S1 : S) = (9 * а²) : (а²) = 9 (раз).
заметим, что если периметр квадрата увеличился в 3 раза, как и сторона квадрата, то площадь, увеличивается в (3)² = 9 раз.
ответ: периметр увеличится в 3 раза, площадь увеличится в 9 раз.
х+2х+4у-4у=7+14 -> 3x=21 -> x=7 в любое (1) 4у=7-х -> y=(7-x)/4=(7-7)/4=0
2) (первое умножу на 2)
6х+2у+х-2у=14+8 ->7x=22 -> x=22/7 в любое (1) у=7-3х=7-3*22/7=(49-66)/7=-17/7
3) (второе на 2)
2х-у-2х+4у=8+10 -> 3y=18 y=6 (во второе например) 2у-5=х х=2*6-5=12-5=7
4)Первое умножу на -1
-х-2у-3х+2у=5+5 -4х=10 х=-2,5 в первое например 2у=-1-х у=(-1-х)/2=(-1+2,5)/2=0,75
5)второе напрмер на -1
х-3у-2х+3у=6-4 -х=2 х=-2 например в первое 3у=х+6 -> y=(x+6)/3=(-2+6)/3=4/3