<> [ Здравствуйте, Dodododpdododp! ] <>
- - - -
<> [ • ответ и Объяснение: ] <>
- - - -
<> [ Нет, Вы не правы. Оно не имеет бесконечное множество решений. Потому что: ] <>
- - - -
<> [ • (x, y) = (0, 1) ] <>
- - - -
<> [ А теперь, если Вы не верите, то мы можем даже и проверить, является ли упорядоченная пара чисел выше решением системы уравнений: ] <>
- - - -
{ 0 + 1 = 1
{
{ 0 + 4 x 1 = 4
- - - -
<> [ А у мы это так: ] <>
- - - -
{ 1 = 1
{
{ 4 = 4
- - - -
<> [ Итог: Упорядоченная пара чисел является решением системы уравнений, так как оба равенства верны. ] <>
- - - -
<> [ С уважением, Hekady! ] <>
Давайте разберемся.
Пусть некоторое A - утверждение. Будем называть утверждением некоторое предположение, которое характеризуется либо как истинное и тогда утверждение равняется единице, либо как ложное и тогда утверждение равняется нулю.
В данном случае за утверждение принимается:
A - предположение, говорящее, что Первая буква гласная.
B - предположение, говорящее, что Последняя буква согласная.
Немного об операциях в т.н. алгебре логики (термин сложный и его нужно разъяснять отдельно, делается это в курсе т.н. "высшей алгебры").
Это сложение (известное также как объединение в теории множеств) и умножение (пересечение). Здесь их называют логическое "ИЛИ" (дизъюнкция) и логическое "И" (конъюнкция). Раз уж речь идет об алгебре, то, конечно, имеем также логическое "НЕ". По аналогии с теорией множеств, это дополнение к какому-то операнду (а суть унарная операция, интересная вещь).
Давайте запишем как нужно само выражение.
-A∧-B (вместо минусов нужно черточку над буквой).
Таблица истинности выглядит так:
В наименованиях столбцов пишите A и B и ваше выражение третьим.
Затем подставляете различные наборы значение A и B, A и B принимают только значения 0 и 1. Получаете соответственно 0 или 1.
"НЕ" - значит, утверждение обращается - было 1, стало 0, и наоборот.
"И" - дает 1 если оба операнда 1, иначе дает 0.
"ИЛИ" - дает 0 если оба операнда 0, иначе дает 1.
Вот и все. Заполняете и получаете нужное.