Весь путь S время в пути пешехода (t), время в пути велосипедиста (t-2) путь до места встречи (S1), вторая часть пути (S2) S = S1 + S2 скорости велосипедиста и пешехода (vv) и (vp) S1 = vv * (4/3) S2 = vp * (4/3) S = (4/3) * (vv + vp) S = t * vp S = (t-2) * vv система (4/3) * (vv + vp) = t * vp t * vp = (t-2) * vv
4*vv = 3 * t * vp - 4*vp 4 * t * vp / (t-2) = (3*t - 4) * vp 4*t = (3*t - 4) * (t-2) 4*t = 3*t*t - 10*t + 8 3*t*t - 14*t + 8 = 0 D = 14*14 - 4*3*8 = 4*(49-24) = 10*10 t(1;2) = (14 +-10) / 6 = (7 +- 5) / 3 t = 4 t = 2/3 часа -- 40 минут - это меньше, чем 1 час 20 минут))) не является решением ответ: 4 часа шел пешеход, 2 часа ехал велосипедист.
Раскрываем скобки и подводим подобные слагаемые:
6х^2 - 3х + 8х - 4 - 6x^2 = 16;
5х - 4 = 16;
5х = 16 + 4;
5х = 20;
х = 20/5 = 4.
2) (1 - 2y)(1 - 3y) = (6y - 1)y - 1.
Раскрываем скобки:
1 - 2у - 3у + 6у^2 = 6у^2 - у - 1;
1 - 5у + 6у^2 = 6у^2 - у - 1;
Перенесем буквенные одночлены в левую часть, а числовые - в правую:
-5у + 6у^2 - 6у^2 + у = -1 - 1;
-4У = -2;
У = (-2)/(-4) = 1/2 = 0,5.
3) 7 + 2x^2 = 2(x + 1)(x + 3).
Раскрываем скобки:
7 + 2x^2 = 2(x^2 + x + 3x + 3);
7 + 2x^2 = 2(x^2 + 4x + 3);
7 + 2x^2 = 2x^2 + 8х + 6;
перенесем буквенные одночлены в левую часть, а числовые - в правую:
2x^2 - 2x^2 - 8х = 6 - 7;
-8х = -1;
х = 1/8.
4) (y + 4)(y + 1) = y - (y - 2)(2 - y).
Раскрываем скобки и подводим подобные слагаемые:
y^2 + 4y + у + 4 = y - (2y - 4 - y^2 + 2у);
y^2 + 5у + 4 = y - (4y - 4 - y^2);
y^2 + 5у + 4 = y - 4y + 4 + y^2;
y^2 + 5у + 4 = -3y + 4 + y^2;
перенесем буквенные одночлены в левую часть уравнения, а числовые - в правую:
y^2 + 5у + 3y - y^2 = 4 - 4;
8у = 0;
у = 0.