Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-1)2 - 4·7·(-67) = 1 + 1876 = 1877
Z1 = 1 - √18772·7 ≈ -3.0232Z2 = 1 + √18772·7 ≈ 3.1660
Y^2=-100
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 02 - 4·1·100 = 0 - 400 = -400
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
5 = 15 x^2Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 02 - 4·15·(-5) = 0 + 300 = 300
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 0 - √3002·15 = -13√3 ≈ -0.5773502691896258
x2 = 0 + √3002·15 = 13√3 ≈ 0.5773502691896258
Z2 - 25 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 02 - 4·1·(-25) = 0 + 100 = 100
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 0 - √1002·1 = 0 - 102 = -102 = -5
x2 = 0 + √1002·1 = 0 + 102 = 102 = 5
(3-2х)² находится в знаменателе, значит, это выражение не может быть равным нулю
Сопоставляем это выражение и отравниваем его от нуля
(3-2х)²≠0
3-2х≠0
-2х≠-3
х ≠ 1,5
Эта точка не входит в область допустимых значений. При всех остальных действительных значениях функци имеет смысл
D(y): x ∈ (-∞; 1,5) ∪ (1,5; +∞)