Итак, места, где производная равна 0 - это точки перегибов (функция с увеличения идёт на спад или наоборот) .
Вот их и найдём f(x)'=3x^2-2x-1=0;
3x^2-2x-1=0;
d=4+12=16
x1=(2-4)/6=-2/6=-1/3
x2=(2+4)/6=1
а теперь посчитаем значения функции для этих двух точек, а также для двух граничных точек (ведь если функция уходит в бесконечность как при x^2 например, то крайние точки могут быть выше или ниже перегибов) .
1)если f(-x) = f(x), то f(x) -чётная; если f(-x) = -f(x), то f(x) - нечётная. Переведём на "простой язык": Если вместо "х" в функцию подставим "-х" и при этом функция не изменится, то всё. данная функция - чётная. Если вместо "х" в функцию подставим "-х" и при этом функция только поменяет знак, то всё. данная функция - нечётная. итак, наши примеры: а) эта функция - ни чётная, ни нечётная в)(х-4)(х-2) = х^2 -6x +8. данная функция у = х. Это нечётная функция. с) это чётная функция. d) это ни чётная, ни нечётная функция. е) это нечётная функция ( числитель не помняет знак, а знаменатель поменяет, значит, вся дробь поменяет знак. 2) у = -2х+1 (у = 1 это прямая параллельная оси х. Симметричные точки относительно этой прямой поменяют знак ординаты)
Итак, места, где производная равна 0 - это точки перегибов (функция с увеличения идёт на спад или наоборот) .
Вот их и найдём f(x)'=3x^2-2x-1=0;
3x^2-2x-1=0;
d=4+12=16
x1=(2-4)/6=-2/6=-1/3
x2=(2+4)/6=1
а теперь посчитаем значения функции для этих двух точек, а также для двух граничных точек (ведь если функция уходит в бесконечность как при x^2 например, то крайние точки могут быть выше или ниже перегибов) .
-1: (-1)^3-(-1)^2+1+2=-1-1+1+2=1
-1/3: (-1/3)^3-(-1/3)^2+1/3+2=-1/27-1/9+1/3+2=-1/27-3/27+9/27+2=2+5/27
1: (1)^3-(1)^2-1+2=1-1-1+2=1
3/2: (3/2)^3-(3/2)^2-3/2+2=27/8-9/4-3/2+2=27/8-18/8-12/8+2=-3/8+2=1+5/8
Как видим найбольшее значение мы получили в точке -1/3 (2 целым 5/27), а найменьшее в точках -1 и 1 (единица)
Потому ответ: минимум функции 1, а максимум 2 целых 5/27
Объяснение: