Дополнить чертижи изображением Оу или Ох так чтобы обозначеная прямая была графиком указаной функции. Допиши в прямоугольниках формулу второй функции. Укажи координаты точки пересечения графиков этих функций и других обозначеных точек
375-348=27 (ВНИМАНИЕ! Всегда от большего вычитаем меньшее - то есть нельзя вычитать 348-375 !) 348-27=321 321-27=294 294-27=267 267-27=240 240-27=213 213-27=186 186-27=159 159-27=132 132-27=105 105-27=78 78-27=51 51-27=24 27-24=3 24-3=21 21-3=18 18-3=15 15-3=12 12-3=9 9-3=6 6-3=3
Итак НОД=3 1848/3=616 375/3=125
Как видим, алгоритм Евклида довольно медленный. Позже получили расширенный алгоритм Евклида, где монотонное вычитание заменили делением. Вычисление НОД расширенным алгоритмом значительно быстрее
Координаты заданной точки: (3; -3).
2) Точка A(a;3), если a>0 расположена в 1 четверти ( или координатном угле ), где находятся положительные значения и х и у.
3) Точка В: х = -2 + 5 = 3,
у = 3 (как у точки А).
Точка С: х = 3,
у = 3 - 5 = -2.
Точка Д: х = -2 (как у точки А),
у = -2 (как у точки С).
4) Координаты точки M - середины отрезка AB, если A(5;3) и B(−7;−2):
М((5+(-7))/2=-1; (3+(-2))/2=0,5)
М(-1; 0,5).