2x - y = -3; <=> y = 2x + 3. (1)
3x + y = -2; <=> y = -3x - 2. (2)
Построим графики функций (1) и (2). Координаты точки их пересечения и будут решением системы.
Функции (1) и (2) линейные, то есть их графиками являются прямые. Для построения прямой достаточно двух точек.
Строим график функции (1): при x = 0 y = 3; при x = 1 y = 5. Через точки (0, 3) и (1, 5) проводим прямую.
Строим график функции (2): при x = 0 y = -2; при x = -1 y = 1. Через точки (0, -2) и (-1, 1) проводим прямую.
По чертежу очевидно, что графики функций (1) и (2) пересекаются в точке (-1, 1). Следовательно, (-1, 1) - решение системы.
ответ: (-1, 1).
Чертеж:
y = 1 - x - x^2 = 1 + 1/4 - (x^2 + x + 1/4) = 5/4 - (x + 1/2)^2
0 < x < 1/2 > 1/4 < y < 1
t = log2(y) > -2 < t < 0
logy(2) = 1/log2(y) = 1/t
t = a/t + b, b > 0
t^2 - bt - a = 0
Обозначим b = 2c, c > 0
Любое значение b <---> любое значение c
t^2 - 2ct - a = 0
t^2 - 2ct + c^2 - c^2 - a = 0
(t - c)^2 = c^2 + a
t - c = +- √(c^2 + a) // c^2 + a >= 0 для любого c > 0 ---> a >= 0
t = c +- √(с^2 + a)
с + √(с^2 + a) >= 0 - не интересует, т.к. нужно найти a, при которых -2 < t < 0
Рассмотрим c - √(с^2 + a) < 0 при любом a > 0
Осталось найти a, при которых
c - √(с^2 + a) > -2
c + 2 > √(с^2 + a) > 0
(c + 2)^2 > c^2 + a
c^2 + 4c + 4 > c^2 + a
4c + 4 > a, при любом c, причем c > 0 следовательно
4с + 4 > 4 >= a
0 < a <= 4
Наибольший отрицательный корень это (-1), так как n - любое целое число.