М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ибрагим002
Ибрагим002
26.04.2023 12:01 •  Алгебра

Разложт на множители х^2+3х^3​

👇
Ответ:
artemka222288
artemka222288
26.04.2023

x^2(1+3x)

Объяснение:

т.к их общий множитель - это x^2

4,8(21 оценок)
Ответ:
EM12EM3
EM12EM3
26.04.2023

×^2(1+3×)

Объяснение:

это правилно

4,8(56 оценок)
Открыть все ответы
Ответ:
bililife
bililife
26.04.2023

1) x ∈ (-∞; -8) U (3; +∞)

2) x ∈ (-∞; -3) U (5; 7)

Объяснение:

1) x^2 + 5x - 24>0

x^2 + 5x - 24=0

D= √(b^2 - 4ac) = √(5^2 - 4 * 1 * (-24)) = √(25 + 96) = √121 = 11

x = (-b +/- √D)/2a

x1 = -5 + 11 / 2 =3

x2 = -5-11 /2 = -8

Получается три интервала:

x<-8

-8<x<3

x>3

чередуем знаки справа налево, первый - плюс (так как нам нужно больше, то выбираем там, где плюс)

получаем x<-8 и x>3

2) (x-5)(x-7)(x+3)<0

(x-5)(x-7)(x+3)=0

x = 0 тогда, когда один из множителей равен нулю:

x=5; x=7; x=-3

получаем четыре интервала (см фотку)

выбераем там, где минус, т. к. нужен знак < по условию

x<-3 и 5<x<7


1) x2 + 5x – 24 >0;2)(х – 5)(х – 7)(х + 3) < 0; решить ​
4,6(69 оценок)
Ответ:
alanasia2004
alanasia2004
26.04.2023

f(x)=\left\{\begin{array}{l}2^{x}\ ,\ \ x\leq 0\ ,\\-x^2\ ,\ \ 0

Исследуем поведение функции вблизи точек, где её аналитическое выражение меняется . Найдём левосторонние и правосторонние пределы в точках х=0, х=2 , х=5 .

a)\ \ \lim\limits _{x \to 0-0}f(x)=\lim\limits _{x \to 0-0}2^{x}=1\ \ ,\ \ \ \lim\limits _{x \to 0+0}f(x)=\lim\limits _{x \to 0+0}(-x^2)=0\\\\\lim\limits _{x \to 0-0}f(x)\ne \lim\limits _{x \to 0+0}f(x)\ \ \Rightarrow

При х=0 функция имеет разрыв 1 рода .

b)\ \ \lim\limits _{x \to 2-0}f(x)=\lim\limits _{x \to 2-0}(-x^2)=-4\ ,\ \ \lim\limits _{x \to 2+0}f(x)=\lim\limits _{x \to 2+0}(x-6)=-4\\\\f(2)=(-x^2)\Big|_{x=2}-4\\\\\lim\limits _{x \to 2-0}f(x)=\lim\limits _{x \to 2+0}f(x)=f(2)=-4\ \ \ \Rightarrow

При х=2 функция непрерывна.

c)\ \ \lim\limits _{x \to 5-0}f(x)=\lim\limits _{x \to 5-0}(x-6)=-1\\\\\lim\limits _{x \to 5+0}f(x)=\lim\limits _{x \to 5+0}3^{\frac{4x}{x-5}}=3^{+\infty }=+\infty \ \ \ \Rightarrow

При х=5 функция имеет разрыв 2 рода .

График функции нарисован сплошной линией.

На 1 рисунке нет чертежа функции  y=3^{\frac{4x}{x-5}}   при х>5  , для которого прямая х=5 является асимптотой , так как он не умещается при данном масштабе. Этот график полностью начерчен отдельно на 2 рисунке, чтобы вы понимали, как он расположен. Но для вашей функции берётся только та часть графика, которая нарисована для х>5 .


Задана функция f(x). Найти точки разрыва функции, если они существуют. Сделать чертеж.
Задана функция f(x). Найти точки разрыва функции, если они существуют. Сделать чертеж.
4,6(100 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ