#3
-1≤sinx≤1 - по определнию
-2≤2sinx≤2
-3≤2sinx≤1
ответ: [-3; 1]
#4
cos(x)=cos(-x) свойство нечестности доказано
#5
Решениями уравнения являются корни 3π/4+2πn и 5π/4+2πn
Соответственно данному интервалу удовлетворяет 2 и 3
#6
tg(3π/4+π)-2*(-sin(π/6))-cos(π+2π)=
tg(3π/4)+2sin(π/6)-cosπ=-1+2*½-(-1)=1
#7
-4π/3+2πn<x<π/3+2πn
#8 не разобрал что за отрезок, но вот корни сам можешь отобрать:
5π/4+2πn; 7π/4+2πn
#9
-1≤cos(x) ≤1 по определению, х²≥0 при всех рациональных х, следовательно х любое рациональное число
bn=b1*q(n-1)
b6=b1*q(в пятой степени)
b3=b1*q(во второй степени)
5=125*q(во второй степени)
q(квадрат)=(дробь, в знаменателе 5, в числителе 125)=(дробь(в знаменатель:1, числитель25)
q=+-одна пятая(дробь)
если q=одна пятая, то b6=125*(одна пятая, в пятой степени)
5(в третей степени)*(одна пятая, в пятой степени)=(дробь, числитель:5 в третей степени, числитель: 5 в пятой степени, сокращается и получается..)=одна двадцать пятая.
если q=-одна пятая, то b6=125*(-одна пятая в пятой степени)=-( дробь, числитель:5 в третей степени, числитель: 5 в пятой степени, сокращается и получается..)=-одна двадцать пятая.
ответ: +-одна двадцать пятая