М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
1анж48
1анж48
27.10.2020 00:23 •  Алгебра

10. (16) Знайдіть степені поданих одночленів:
а) x17y'z; б) 4a2bcd; в) -11m'nk”; г) -0,21.

👇
Ответ:

а) x18y;

б) 8abcd;

в) 0;

4,7(43 оценок)
Открыть все ответы
Ответ:
tanaletinaaaaa
tanaletinaaaaa
27.10.2020

Преобразуем 2 уравнение:

(x+y)^2-(x+y)=0

(x+y)(x+y-1)=0 - произведение равно 0, если хотя бы один множитель равен 0

в 1 уравнении делаем замену:

xy=t

получим:

t^2+2t=3

t^2+2t-3=0

D=4+12=16=4^2

t1=(-2+4)/2=1

t2=(-2-4)/2=-3

система разделится на 4 системы

1) xy=1

x+y=0

x=-y

-y^2=1

y^2=-1

y - нет решений

2) xy=1

x+y-1=0

x=1-y

(1-y)y=1

-y^2+y-1=0

y^2-y+1=0

D<0

y - нет корней

3) xy=-3

x+y=0

x=-y

-y^2=-3

y^2=3

y1=sqrt(3)

y2=-sqrt(3)

x1=-sqrt(3)

x2=sqrt(3)

4) xy=-3

x+y-1=0

x=1-y

(1-y)*y=-3

-y^2+y=-3

-y^2+y+3=0

y^2-y-3=0

D=1+12=13

y3=(1+sqrt(13))/2

y4=(1-sqrt(13))/2

x3=1-(1+sqrt(13))/2=(2-1-sqrt(13))/2=(1-sqrt(13))/2

x4=1-(1-sqrt(13))/2=(2-1+sqrt(13))/2=(1+sqrt(13))/2

ответ: (-sqrt(3);sqrt(3)), (sqrt(3);-sqrt(3)), ((1-sqrt(13))/2;(1+sqrt(13))/2), ((1+sqrt(13))/2;(1-sqrt(13))/2)

Объяснение:

вродебы так

4,6(80 оценок)
Ответ:
Pol111111111663
Pol111111111663
27.10.2020
Переписывая уравнение в виде y=-(x-2)²+3=-x²+4x-1, замечаем, что график представляет собой квадратическую параболу. Так как коэффициент при x² равен -1<0, то ветви параболы направлены вниз. Первый член -(x-2)² обращается в 0 лишь при x=2, а пи других значениях х он отрицателен. Поэтому точка x=2 является вершиной параболы, в которой функция достигает своего наибольшего значения Ymax=y(2)=-2²+4*2-1=3. То есть координаты вершины есть (2;3). Чтобы найти координаты точек пересечения параболы с осью ОХ, надо решить уравнение x²-4x+1=0. Находим дискриминант D=(-4)²-4*1*1=12=(2√3)². Тогда x1=(4+2√3)/2=2+√3, x2=(4-2√3)/2=2-√3. Значит, (2+√3;0) и (2-√3;0) - координаты точек пересечения параболы с осью ОХ. Отсюда ясно, что если с>3, то прямая y=c не пересекает параболу, при c=3 прямая y=3 имеет с параболой одну общую точку -  вершину параболы. А при c<3 прямая пересекает параболу в 2 точках. ответ: при c<3.
4,7(79 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ