М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
goldlena1979
goldlena1979
10.05.2020 07:14 •  Алгебра

Из чего в основу из готовилась оружие кочевников кто то будет отвечать​

👇
Открыть все ответы
Ответ:
danilcs02
danilcs02
10.05.2020
Пусть его скорость была -хкм/ч. первый за 2 часа проехал   16*2=32 км,   что бы его догнать нужно 32/(х-16) часов. второй за 1 час проехал 10 км,     что бы догнать второго  нужно 10/(х-10) часов. разница в гонке между ними известно по условию. состовляем уравнение 32/(х-16)-10/(х-10)=4,5 32х-320-10х+160=4,5(х-10)(х-16) при х≠10 и х≠16 22х-160=4,5(х²-26х+160) 4,5х²-139х+880=0 д=59² х1=(139+59)/9=22 х2=(139-59)/9=8.(8) так как х2< 10 то это не может быть решением, так как он никогда не догнал бы даже второго велосипедиста. получаем ответ при х=22км/ч     ответ: 22 км/ч
4,4(49 оценок)
Ответ:
davaispi
davaispi
10.05.2020
Хорошо, давайте решим задачу по нахождению наибольшего и наименьшего значения функции у=х^-3 на промежутке [-3; -1].

Для начала, нам нужно найти значения функции у=х^-3 на границах данного промежутка, то есть в точках -3 и -1.

Значение функции в точке -3 можно найти, подставив значение -3 вместо х в функцию. Таким образом, получим у = (-3)^-3. Чтобы вычислить это значение, нужно возвести -3 в степень -3, что равносильно взятию обратного значения -3 в кубе. Так как куб отрицательного числа также будет отрицательным, получим у = -1/(-3)^3 = -1/(-27) = 1/27.

Значение функции в точке -1 можно найти, подставив значение -1 вместо х в функцию. То есть у=(-1)^-3. Запишем это выражение как дробь, чтобы упростить вычисления: у = 1/(-1)^3. Так как (-1)^3 равно -1, получим у = 1/(-1) = -1.

Таким образом, мы получили значения функции у=х^-3 на границах промежутка [-3; -1]: наименьшее значение -1 и наибольшее значение 1/27.

Для определения точек, в которых функция может достичь наименьшего и наибольшего значения внутри промежутка, необходимо найти экстремумы функции. В данном случае, такая точка будет являться точкой минимума для значения -1, и точкой максимума для значения 1/27.

Экстремумы функций могут находиться в точках, где производная функции равна нулю или не определена. В данном случае, производная функции у=х^-3 будет равна:

у' = -3х^-4

Мы можем приравнять производную к нулю и решить полученное уравнение:

-3х^-4 = 0

Поскольку -3 не равно нулю, нужно приравнять х^-4 к нулю:

х^-4 = 0

Так как степень х^-4 равная нулю может получиться только при х = 0, это будет точкой, в которой производная равна нулю.

Однако, мы видим, что точка х = 0 не входит в промежуток [-3; -1]. Поэтому функция не имеет экстремумов на этом промежутке.

Таким образом, наибольшее значение функции у=х^-3 на промежутке [-3; -1] равно 1/27, и оно достигается в точке х = -3. Наименьшее значение функции на этом промежутке равно -1 и достигается в точке х = -1.
4,7(35 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ