В итоге,существует расставить 2 ученикам 2 оценки (4 и 5).
А если прибавить к ним еще одного ученика - С. То:
А Б С 4 4 4 5 5 5 4 4 5 4 5 5 5 5 4 5 4 4 4 5 4 5 4 5
В итоге получаем
А что если, оставим тех же 2 учеников, но добавим 1 оценку - 3?
А вот что получим:
А Б 3 3 4 4 5 5 3 4 4 3 4 5 5 4 3 5 5 3
В итоге, мы получили
Нет смысла, добавлять 3 ученика. Уже и так можно увидеть закономерность.
В 1 раз, мы имели 2 ученика и 2 оценки, отметим это как: В 2 раз, мы имели 3 ученика и 2 оценки, отметим это как: В 3 раз, мы имели 2 ученика и 3 оценки, отметим это как:
А теперь, выведем формулу: - где a-число оценок, b-число учеников.
В итоге и получаем: 1 случай: 2 случай: 3 случай:
Теперь, вычислим наш случай в задаче. Есть 24 ученика = b, и 4 оценки=a (2,3,4,5). Отсюда:
Второй
Для первого ученика существует 4 варианта: 2,3,4,5 Для второго ученика существует 4 варианта на каждый вариант первого ученика. То есть: - варианта событий.
Для третьего ученика существует 4 варианта на каждый вариант второго ученика. То есть: - варианта событий.
И так далее. В итоге получаем, что для 24 учеников существует ровно:
/х=-1 /у=-8 3)а)2а4в3-2а3в4+6а2в2=2а2в2*(а2в-ав2+3) 4) v t s Из А 2 км/ч 3 ч 6 км Из В (х-2) км/ч 2 ч 2(х-2) км Собст.ск.-х км/ч Ск.теч.-2 км/ч Составим и решим ур-е: 6+2(х-2)=30 6+2х-4=30 2х=30-6+4 2х=28 х=14(км/ч)-собственная скорость лодки
Объяснение:
8а³ - 4а⁴ - 24а⁴ =
8а³ - 28а⁴ =
4а³ - (2 - 7а³)