Б.° Пряма, перпендикулярна до бісектри- си кута А, перетинає його сторони в точках ВіС. Доведіть, що трикут- ник ABC рівнобедрений. 3 Малюнка нема:( Хелп!!
Стандартный вид это когда приведены подобные и все сосчитано , так? раскрываем скопки ** вторая степнь ***третья степень 2k**+6k-3k-6+k-2k**-5+10k 2k** и -2k** уходят тк при сложении =0 ответ: -6k-11
первую скопку раскрыть , у остальных в начале минус -это вирус , выворачиваем , а последнюю не трогаем 5x-5y-x+y-x-y (5x-y) перед скопкой у , множим содержимое скобок на у (** - вторая спень) 5x-5y-x+y-x-y-5xy-y** приводим подобные (мухи котлеты отдельно ) +y-y=0 3x-5y-5xy-y** -5у и -у** степени разные и мы не могем их сложить
Пусть п = масса песка (первоначальная) , б = масса (первоначальная) всего остального в смеси. Полная масса смеси = п+б (первоначальная) . Т. е. 1) п/(п+б) = 0,3; Добавили еще 12 кг - и стало песка 45%: 2) (п+12)/(п+б+12) = 0,45. Из этих двух уравнений находим первоначальную массу песка (она чуть позже понадобится) : 1) п = 0,3(п+б) -> 0,7п = 0,3б -> б = 7/3*п; 2) (п+12) =0,45(п+б+12); -> п + 12 = 0,45п + 0,45б + 5,4 -> 0,55п = 0,45б - 6,6 -> подставляем б из предыдущего уравнения -> 0,55п = 0,45*7/3*п - 6,6 -> 0,55п = 0,15*7*п - 6,6 -> 0,5п = 6,6 -> п = 13,2 кг. Теперь пусть x - масса песка, которую нужно добавить, чтобы его доля в общей массе смеси была 60%: (п+12+x)/(п+б+12+x) = 0,6; п + 12 + x = 0,6(п+б+12+x); раскрываем скобки: 0,4п + 4,8 + 0,4x = 0,6б; подставляем б из первого уравнения (б = 7/3*п) : 0,4п + 4,8 + 0,4x = 1,4п; 4,8 + 0,4x = п; отсюда x = (п - 4,8)/0,4; Подставляем п (мы его нашли чуть выше, п = 13,2): x = (13,2 - 4,8)/0,4 = 21
так як це бісектриса, а також кут між бісектрисою і стороною рівний 90, то трикутник рівнобедренний, бо в ньому бісетриса є висотою