Y = x³ - 6x² - 15x - 2 1. Находим интервалы возрастания и убывания. Первая производная. f'(x) = 3x² - 12x - 15 Находим нули функции. Для этого приравниваем производную к нулю 3x² - 12x - 15 = 0 Откуда: x₁ = -1 x₂ = 5 (-∞ ;-1) f'(x) > 0 функция возрастает (-1; 5) f'(x) < 0 функция убывает (5; +∞) f'(x) > 0 функция возрастает В окрестности точки x = -1 производная функции меняет знак с (+) на (-). Следовательно, точка x = -1 - точка максимума. В окрестности точки x = 5 производная функции меняет знак с (-) на (+). Следовательно, точка x = 5 - точка минимума.
ответ
Объяснение:
1) 3 1/9 : 2 1/3 - 2 5/6=28/9 : 7/3 -2 5/6=28/9*3/7 -2.5/6=4/3-2 5/6=
=8/6-2 5/6=-(2 5/6 -1 2/6)=-1 3/6=-1 1/2 = -1.5;
2) 1 5/7 - 4 3/13 : 1 19/26 = 1 5/7 - 55/13 : 45/26=1 5/7-55/13*26/45 =
=1 5/7-22/9 = 1 5/7 - 2 4/9 = -(2 28/63-1 45/63) = - (1 (28-45)/63)=
=-(63+28-45)/63= -46/63;
3) 10 16/17 : 8 5/11 + 1 2/3 = 186/17 : 93/11 +1 2/3 = 186/17 * 11/93 + 1 2/3 =
=22/17+1 2/3=1 5/17+1 2/3=1 15/51 + 1 34/51 = 2 49/51;
4) 47/48 : 3 13/27 - 13/16= 47/48 : 94/27 - 13/16 = 47/48*27/94 -13/16=
= 27/96-13/16 = 27/96-78/96=-51/96=-17/32.