М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
koalakoalakoala
koalakoalakoala
09.12.2022 12:33 •  Алгебра

Вычислить расстояние от т. А(1;1) до прямой x = –1+2t y = –1– 6t.

👇
Открыть все ответы
Ответ:
aadiiii1
aadiiii1
09.12.2022

y=x² при х∈[-2;1]

найдём производную

y' = 2x

приравняем её нулю:

2x = 0

х = 0

При х<0  y'<0, ⇒ у убывает

При х>0  y'>0  ⇒ у возрастает

и при х=0 имеем локальный минимум функции

уmin = 0

На интервале[(-2;1] от -2 до 0 функция у убывает, а от 0 до 1 возрастает.

Следовательно наименьшее её значение имеет место в точке локального минимума, т.е

у наим = уmin = 0.

Наибольшее значение функции при х = -2, потому что функция y=x² чётная и. следовательно, график её симметричен относительно оси у. И чем дальше от оси у находится точка, тем большее в ней значение имеет эта функция.

у наиб = у(-2) = (-2)² = 4

ответ: у наим = 0, у наиб = 4

 

 

4,7(49 оценок)
Ответ:
Vikohkamy
Vikohkamy
09.12.2022

Возможные методы решения зависят от вида системы. Если система уравнений состоит из линейных уравнений(то есть уравнений, в которых максимальная степень равна 1), то чаще всего используют следующие методы:

 1)Подстановки.

 2)Сложения

Суть метода подстановки заключается в том, что мы выражаем в любом уравнении системы одну переменную через другую(если там есть y, то именно его удобнее всего выразить), а затем подставить в другое уравнение вместо этой переменной выражение, его заменяющее. далее решаем уравнение с одной переменной. Решив его полученный результат обратно подставляем в первичное выражение, и находим другую переменную.

Суть метода сложения заключается в том, что мы складываем обе части каждого уравнения складываем между собой. Суть этого метода, как и суть любого другого - избавиться от одной из переменных и перейти к уравнению с одной переменной(неважно какому). Значит, чтобы одна из переменных так сказать ушла, надо чтобы коэффициенты перед переменными были противоположными числами. Например, 3x и -3x. тогда при складывании ничего от этой переменной не остаётся. складываем почленно каждую часть уравнений системы(одну переменную со своей переменной числа с числами). затем переходим опять к уравнению с одной переменной. решаем его, а переписываем любое из исходных уравнений сисетмы. Корень подставляем в любое исходное уравнение и получаем значение второй переменной. Этот метод применяется, когда неудобен метод подстановки(главным образом тогда, когда при обеих переменных во всех уравнениях стоят коэффициенты, отличные от 1). Сейчас я описал методы решения систем линейных уравнений. Есть системы(и встречаются довольно часто), где какая-либо переменная или обе сразу в уравнениях стоит в степени, большей первой(2,3 или выше). Решение таких систем высших порядков несколько сложнее, поскольку добавляется ещё метод решения, а также есть специфические системы(системы однородных, симметрических уравнений), которые решаются каким-либо особым Для решения систем высших порядков характерны такие же методы, как и для решения линейных. Приведу пример. решить систему уравнений:

                      x+y = 9          

                      y²+x = 29

Выразим в первом уравнении y через x(метод подстановки):

               y = 9-x

Подставлю данное выражение вместо y:

                      y = 9-x

                      (9-x)²+x = 29

Решим уравнение с одной переменной:

                 (9-x)² + x = 29

                  81 - 18x + x² + x = 29

                  x²-17x+52 = 0

                  x1 = 4; x2 = 13

Теперь у нас получилось 2 варианта:

 x = 4            или                x = 13

  y = 5                                 y = -4

Мы получили корни системы.

4)Следующий метод применяется в основном к решению систем высших порядков. Он называется методом замены переменной. Его суть состоит в том, чтобы определённое выражение, являющееся общим для обоих уравнений сисетмы, заменить на определённую переменную, а затем решить систему с двумя переменными знакомого типа. После определения значения переменной замены, вместо этой переменной подставить заменённое выражение, и решить одну или две системы. Всё зависит от того, сколько эта переменная будет иметь решений.

4,8(47 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ