Дана функция у = (x³ -6x² + 32)/(4 - x). Если х не равен 4, то числитель можно разделить на знаменатель и получим квадратичную функцию у = - x² + 2x + 8. График её - парабола ветвями вниз. Заданное условие выполняется, когда прямая y = а является касательной к графику в вершине параболы. Хо = -в/2а = -2/(2*(-1)) = 1. Отсюда имеем один из ответов: а = у(х=1) = -1+2+8 = 9. Так как заданная функция не существует в точке х = 4, то прямая у = 0 пересекает график только в точке х = -2. Второй ответ: а = 0.
Системы можно решать двумя (по крайней мере, мне известно лишь два сложением и подстановкой.
Ну, возьмем простенькое
у+х=6, х^2-2у+4=0;
через верхнее уравнение можем подставить в нижнее значение х в нижнее,
то есть:
х=6-у, (6-у)^2-2y+4=0;
дальше решаем нижнее полученное уравнение, выписывая его ниже
(6-у)^2-2y+4=0 36-12у+у^2-2у+4=0 y^2-14y+36=0
потом решаем через дискриминант таким образом мы получаем два корня (если нет никаких ограничений по заданию)
дальше значения у мы подставляем вот в это уравнение, чтобы выявить х то есть сюда х=6-у подставляем сначала первое значение у, а потом и второе считаем и находим два значения х и у (не забываем про знаки в системах! после первого уравнения -- запятая, после второго -- точка с зпт)
а если сложением, то тут обычно нужно еще и подделать одно из уравнений. я пользуюсь практически всегда методом подстановки
но если разбирать сложение, то тоже на простеньком примере
у-х=12 3у+х=22
складываем эти два уравнения и получаем 4у=34 х самоуничтожились, так как -х+х=0 теперь мы можем найти у у=34/4
а потом снова же подставляем это значение в любое уравнение системы и находим х.
по теореме Виета x^2+bx+q
x1+x2=-b
x1×x2=c
-5+8=3
-5×8=-40
значит:
x^2+3x-40