М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dgotshalk
dgotshalk
01.08.2020 20:20 •  Алгебра

Найдите значения выражений​


Найдите значения выражений​

👇
Ответ:
InessaKotik2005
InessaKotik2005
01.08.2020

СКАЧАЦ приложение дроби

4,4(37 оценок)
Открыть все ответы
Ответ:
лисичка73
лисичка73
01.08.2020
[[[ 1-ый

17 \cdot 10 = 170 \ ;

221 - 170 = 51 = 17 \cdot 3 \ ;

17 \cdot 13 = 17 \cdot ( 10 + 3 ) = 17 \cdot 10 + 17 \cdot 3 = 170 + 51 = 221 \ ;

17 \cdot (-13) = -221 \ ;

17 \cdot 20 = 340 \ ;

17 \cdot 19 = 17 \cdot ( 20 - 1 ) = 17 \cdot 20 - 17 \cdot 1 = 340 - 17 = 323 \ ;

Итак:

-221 = 17 \cdot (-13) \ ;

323 = 17 \cdot 19 \ ;

между (–13) и 19 (включительно) лежат нечётные числа:
(–13), (–11), (–9), (–7), (–5), (–3), (–1), 1, 3, 5, 7, 9, 11, 13, 15, 17 и 19
– всего 17 чисел.

Нам необходимо найти сумму всех допустимых   k \ ,    каждое из которых представляет собой какое-то допустимое нечётное число, умноженное на 17, тогда можно сложить все эти допустимые нечётные числа и умножить их на 17 (вынести за скобку общий множитель).

Чтобы сложить члены арифметической последовательности (которой являются последовательные нечётные числа), нужно среднеарифметическое крайних членов этой последовательности умножить на их количество. Тогда искомая сумма равна:

S = \frac{ -13 \cdot 17 + 19 \cdot 17 }{2} \cdot 17 = \frac{ 6 \cdot 17 }{2} \cdot 17 = 3 \cdot 17^2 = 3 \cdot 289 = 867 \ ;

[[[ 2-ой

Пусть    k = 17 \cdot (2n+1) \ \ \ , n \in Z \ ;

-221 \leq k < 324 \ ; \ \ \ || : 17

-13 \leq 2n+1 < 19 \frac{1}{17} \ ; \ \ \ || -1

-14 \leq 2n < 18 \frac{1}{17} \ ; \ \ \ || :2

-7 \leq n < 9 \frac{1}{34} \ ;

Итак:

-7 \leq n < 10 \ ;

k = 17 \cdot (2n+1) = 17 \cdot 2n + 17 \cdot 1 \ ;

k = 17 + 34n \ ;

Нам необходимо найти сумму всех членов арифметической прогрессии в пределах индекса    -7 \leq n   который пробегает    10 - (-7) = 17 \    разных значений.

Чтобы сложить члены арифметической прогрессии, нужно среднеарифметическое крайних членов этой последовательности умножить на их количество. Тогда искомая сумма равна:

S = \frac{ [ 17 + 34 \cdot (-7) ] + [ 17 + 34 \cdot 9 ] }{2} \cdot 17 = \frac{ 2 \cdot 17 + 34 \cdot ( -7 + 9 ) }{2} \cdot 17 = \\\\ = ( 17 + \frac{ 34 \cdot 2 }{2} ) \cdot 17 = ( 17 + 17 \cdot 2 ) \cdot 17 = 17^2 \cdot 3 = 289 \cdot 3 = 867 \ ;

О т в е т :  867 .
4,7(31 оценок)
Ответ:
lolilol2
lolilol2
01.08.2020

1) Формула, задающая линейную функцию, имеет вид у = kx + b.

Так как прямая параллельна прямой у = - 2x +7, то угловые коэффициенты прямых равны, k = - 2, формула имеет вид у = - 2х + b.

2) Прямая у = - 2х + b проходит через точку А( - 2; - 4), тогда

- 4 = - 2•(-2) + b

- 4 = 4 + b

- 4 - 4 = b

- 8 = b

Формула примет вид: у = - 2х - 8.

ответ: у = - 8 - 2х.

2) у = (х - 3)² - (х - 2)(х + 4)

у = х² - 6х + 9 - (х² + 4х - 2х - 8) = х² - 6х + 9 - х² - 4х + 2х + 8 = - 8х + 17.

у = - 8х + 17

k = - 8; b = 17.

ответ: k = - 8; b = 17.

4,5(70 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ