М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Mila1515
Mila1515
08.01.2021 08:04 •  Алгебра

Используя свойства и график функции y=x²+2x-3 реши неравенство x²+2x-3<0

👇
Ответ:
аноним991
аноним991
08.01.2021

Вот решение, надеюсь что


Используя свойства и график функции y=x²+2x-3 реши неравенство x²+2x-3<0​
4,6(89 оценок)
Открыть все ответы
Ответ:
решите неравенство 3/(2^(2-x^2)-1)^2-4/(2^(2-x^2)-1)+1>=0

 3/(2^(2 - x²) -1)² - 4/(2^(2- x²) -1) + 1  ≥  0  ;
замена :   t = 2^(2-x²) -1
3 / t² - 4 / t  +1  ≥  0  ;
(t² - 4t +3) / t²  ≥  0 
для квадратного трехчлена  t² - 4t +3    t₁=1  корень: 1² - 4*1+3 = 1- 4+3 =0.
t₂ =3/t₁=3/1=1 (или  t₂ =4 -1=3)  
* * * наконец  можно  и решить  уравнение t² - 4t +3=0 * * *

(t² - 4t +3) / t²  ≥  0  ⇔ (t -1)(t - 3) / t²   ≥  0 .
            +               +                        -                      +
(0) [1] [ 3]

* * * совокупность неравенств [ { t  ≤ 1 ; t ≠0  .   {  t ≥ 3  * * *
a)
{ 2^(2-x²) -1  ≤ 1 ; 2^(2-x²) -1 ≠ 0 .⇔ { 2^(2-x²) ≤ 2  ; 2^(2-x²)  ≠ 1 . ⇔
{ 2^(2-x²) ≤ 2¹  ; 2^(2-x²)  ≠ 2⁰.⇔ {2-x²  ≤ 1 ; 2 - x² ≠ 0.⇔{ x² -1 ≥ 0 ; x² ≠ 2⇔
{ (x+1)(x-1) ≥ 0 ;  x ≠ ±√2 .  ⇒   x∈  ( -∞ ; -√2 ) ∪  (-√2 ; -1] ∪ [1 ; √2) U  (√2 ; ∞) .
b)
2^(2-x²) -1  ≥ 3 ⇔ 2^(2-x²)  ≥ 4 ⇔2^(2-x²)  ≥ 2² ⇔2- x²  ≥ 2 ⇔ x² ≤ 0  ⇒ x=0.

ответ:   x∈  ( -∞ ; -√2 ) ∪  (-√2 ; -1] ∪ { 0} ∪  [1 ; √2) U  (√2 ; ∞) .
4,8(100 оценок)
Ответ:
olgauschap1
olgauschap1
08.01.2021
Можно попробовать разбить на систему неравенств:
1/3≤(x^2-x+1)/(x^2+x+1) и  
(x^2-x+1)/(x^2+x+1)≥3
после приведения к общему знаменателю, переносу в левую часть и упрощения получаем:
(x-1)^2/(3(x^2+x+1))≥0 и
-(x+1)^2/(x^2+x+1)≤0
далее рассуждаем: первое неравенство- дробь больше или равна нулю в двух случаях, когда числитель больше или равен нулю, знаменатель больше нуля и когда числитель меньше или равен нулю и знаменатель меньше нуля. В нашем случае, независимо от значений x, числитель больше или равен нулю, знаменатель всегда строго больше нуля. Следовательно данная дробь всегда положительна.
Аналогичные рассуждения со второй дробью. Она всегда отрицательна или равна нулю- числитель при любых x отрицательный, а при x=-1 равен нулю. А знаменатель всегда положительный. 
Следовательно выполняется указанное двойное неравенство. ч.т.д.
4,4(58 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ