График и таблица точек прикреплены.
Т.к. наибольшего значения в промежутке [1/2; 8] функция достигает при x = 1/2 (по графику и таблице), то подставив это число в функцию, получим её (функции) наибольшее значение:
1/2 = 0,5
0,5 + 16/0,5 = 32,5 --> наибольшее значение функции в промежутке [1/2; 8].
Т.к. наименьшего значения в промежутке [1/2; 8] функция достигает при x = 4 (по графику и таблице), то подставив это число в функцию, получим её (функции) наименьшее значение:
4 + 16/4 = 4 + 4 = 8 --> наименьшее значение функции в промежутке [1/2; 8] (это можно было и в таблице посмотреть).
НАИБ. 32,5;
НАИМ. 8.
ответ:
объяснение:
5x^3 - 3x^5 = 0
x^3( 5 - 3x^2) = 0
x = 0
5 - 3x^2 = 0
-3x^2 = -5
x^2 = 5/3
x = -5/3
x = 5/3 (нули функции: -5/3; 0 ; 5/3 )
15x^2 - 15x^4 = 0
x^2 - x^4 = 0
x^2(1 - x^2) = 0
x^2 = 0
x = 0
1 - x^2 = 0
(1-x)(1+x) = 0
x = 1, x = -1
5 * 1^3 - 3 *1^5 = 5 - 3 = 2
-5 + 3 = -2
(1; 2) - точка максимума
(-1; -2) - точка минимума
--(-)--(-1)-(+)--0--(+)--(1) --(-)->
там где на интервале (-) там функция убывает, где (+) наоборот, т. е.
(-00; -1) - функция убывает
(-1; 0) - функция возрастает
(0; 1) - функция возрастает ( или (-1; 1))
(1; + 00) - функция убывает
........................................................................