Если разных цветов меньше 10, то по-любому найдется 11 кубиков одного цвета. Например, если всего 9 цветов, и мы покрасим по 10 кубиков в каждый цвет, то мы используем 90 кубиков. Остается 11. Любой из них красим в любой из наших 9 цветов - и получаем 11 кубиков одного цвета. Если всего 10 цветов, то, покрасив по 10 кубиков в каждый цвет, мы получим 100 цветных кубиков. Красим 101-ый кубик в любой цвет, и получаем 11 кубиков одного цвета. Теперь пусть у нас больше 10 разных цветов. Например, 11. Тогда мы всегда сможем выбрать 11 кубиков, покрашенных в 11 разных цветов. Если цветов будет еще больше, например, 15, то выбрать 11 кубиков разных цветов будет еще проще. Таким образом, мы всегда можем найти или 11 одинаковых, или 11 разных кубиков.
№2. y=3x²+2x-5 а)x=-2/3 => y=3*(-2/3)² + 2*(-2/3)-5 = 3*4/9 - 4/3 - 5 = 4/3 - 4/3 - 5 = -5; y=-5; б)0=3x²+2x-5 D=b²-4ac, D=2² - 4 * 3 * (-5)=64; x1=(-b-√D)/2a, x2=(-b+√D)/2a x1=(-2-8)/2*3=-5/3; x2=(-2+8)/2*3=1. x1=-5/3 (целые сам выведешь) и x2=1- нули функции. №3 К этому номеру будет фотография (а) б)при х∈(-∞;-2)∪(2;+∞); в) функция убывает при x∈[0;=∞). №4 x²-3x+2 Приравняю к нулю => x²-3x+2=0; D=b^2-4ac, D=(-3)²-4*2*1=1; x1=(-b-√D)/2a, x2=(-b+√D)/2a x1=(3-1)/2*1=1, x2=(3+1)/2*1=2 ответ: 1;2. №5 y=2(x-4)²-2 Тут даже не заморачивайся тут просто можно сразу написать, на всякий случай объясню как это работает: 1)y=ax²+n получен из y=ax² параллельным переносом вдоль оси Oy на n единиц вверх (при n>0) и на n единиц вниз (при n<0).2)y=a(x-m)² получен из y=ax² параллельным переносом вдоль оси Ox на m единиц вправо (при m>0) и на m единиц влево (при m<0). №6 Ты мне сказал не решать. №7 в-вершина, xв=-1, yв=5; y=x²+px+q; xв=-b/2a=-p/2; -p=xв*2; -p=-1*2=-2; p=2; Подставим все имеющиеся переменные в функцию y=x²+px+q: 5=(-1)²+2*(-1)+q; 5=1-2+q; 5=q-1; q=5+1=6 ответ: при p=2 и q=6 вершина параболы y = x2 + pх + q находится в точке (-1;5).
Например, если всего 9 цветов, и мы покрасим по 10 кубиков в каждый цвет, то мы используем 90 кубиков. Остается 11. Любой из них красим в любой из наших 9 цветов - и получаем 11 кубиков одного цвета.
Если всего 10 цветов, то, покрасив по 10 кубиков в каждый цвет, мы получим 100 цветных кубиков. Красим 101-ый кубик в любой цвет, и получаем 11 кубиков одного цвета.
Теперь пусть у нас больше 10 разных цветов. Например, 11.
Тогда мы всегда сможем выбрать 11 кубиков, покрашенных в 11 разных цветов.
Если цветов будет еще больше, например, 15, то выбрать 11 кубиков разных цветов будет еще проще.
Таким образом, мы всегда можем найти или 11 одинаковых,
или 11 разных кубиков.