М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
egorshlyahov12p0dhm9
egorshlyahov12p0dhm9
14.09.2022 03:10 •  Алгебра

Исследовать функции и построить их график 1) y=3x-5
2)y=1/2x^3
3)y=x^2-1
4)y=x^2+3x-4
Сделайте

👇
Ответ:
akaev1087
akaev1087
14.09.2022

ответ:172.

1) 5^(x+y)=125, (1)

3^((x-y)²-1)=1;   (2)

5^(x+y)=5³, (1)

3^((x-y)²-1)=3^0; (2)

x+y=3, (1)

(x-y-1)(x-y+1)=0; (2)

y=3-x, (1)

(x-3+x-1)(x-3+x+1)=0; (2)

(2x-4)(2x-2)=0;

2x-4=0;

2x=4;

x1=2

или

2x-2=0;

2x=2;

x2=1.

y1=3-2=1;

y2=3-1=2.

ответ: (2;1), (1;2).

2) 3^x+3^y=12, (1)

6^(x+y)=216; (2)

6^(x+y)=6³;

x+y=3;

y=3-x;

3^x+3^(3-x)=12; (1)

3^(2x)-12*3^x+27=0;

3^x=t;

t²-12t+27=0;

D=144-108=36;

t1=(12-6)/2=3;

t2=(12+6)/2=9;

3^x=3;

x1=1;

3^x=9;

x2=2;

y1=3-1=2;

y2=3-2=1.

ответ: (1;2), (2;1).

3) 4^(x+y)=128, (1)

5^(3x-2y-3)=1; (2)

2^(2(x+y))=2^7, (1)

5^(3x-2y-3)=5^0; (2)

2x+2y=7, (1)

3x-2y-3=0; (2)

2y=7-2x, (1)

3x-7+2x-3=0; (2)

6x=10;

x=10/6=5/3;

y=(7-2x)/2=(7-10/3)/2=11/6.

ответ: (5/3;11/6).

4) 3^(2x-y)=1/81, (1)

3^(x-y+2)=27; (2)

3^(2x-y)=3^(-4), (1)

3^(x-y+2)=3³; (2)

2x-y=-3, (1)

x-y+2=3; (2)

x-y=1;

y=x-1;

2x-x+1=-3; (1)

x=-4;

y=-4-1=-5.

ответ: (-4;-5).

173.

1) 4^(x+y)=16, (1)

4^(x+2y-1)=1; (2)

4^(x+y)=4², (1)

4^(x+2y-1)=4^0; (2)

x+y=2, (1)

x+2y-1=0; (2)

y=2-x; (1)

x+2(2-x)-1=0; (2)

x+4-2x-1=0;

-x=-3;

x=3;

y=2-3=-1.

ответ: (3;-1).

2) 6^(2x-y)=√6, (1)

2^(y-2x)=1/√2; (2)

6^(2x-y)=6^(1/2); (1)

2^(y-2x)=2^(-1/2); (2)

2x-y=1/2, (1)

+

y-2x=-1/2; (2)

0=0

ответ: нет решений.

3) 5^(2x+y)=125, (1)

7^(3x-2y)=7; (2)

5^(2x+y)=5³, (1)

7^(3x-2y)=7^1; (2)

2x+y=3, (1)

3x-2y=1; (2)

y=3-2x; (1)

3x-2(3-2x)=1;

3x-6+4x=1;

7x=7;

x=1;

y=3-2*1=1.

ответ: (1;1).

4) 3^(4x-3y)=27√3, (1)

2^(4y+x)=1/(2√2); (2)

3^(4x-3y)=3^(7/2), (1)

2^(4y+x)= 2^(-3/2); (2)

4x-3y=7/2, (1)

4y+x=-3/2; (2)

x=-3/2-4y,  

4(-3/2-4y)-3y=7/2; (1)

-6-16y-3y=7/2;

-19y=19/2;

y=-1/2;

x=-3/2-4(-1/2)=-3/2+2=1/2.

ответ: (1/2;-1/2).

Объяснение:

4,8(66 оценок)
Открыть все ответы
Ответ:
спирина1
спирина1
14.09.2022

«Песня про купца Калашникова» (1837) знаменует начало нового этапа в творческом развитии поэта (в том же году были написаны «Бородино» и «Смерть поэта»). Никогда ранее Лермонтов не приближался так близко к народной поэзии. Близость эта проявляется не просто в определенных формальных особенностях (в языке, стихе), но прежде всего в воспроизведении народного сознания. Замысел поэмы был связан с идеей, отразившейся в «Бородино»: восхищение героическими подвигами и личностями эпох и горечь при мысли о ничтожестве нынешнего поколения.

 В «Песне…» выражены поэтические размышления не столько об эпохе Ивана Грозного, сколько о своей современности, о правах человеческой личности. В частности, существует предположение, что в поэме нашли отражение раздумья автора о судьбе и причинах гибели Пушкина. Смысл поэмы Белинский видел в том, что в нец «…поэт от настоящего мира не удовлетворяющей его русской жизни перенесся в ее историческое Два крупных, сильных характера, созданные Лермонтовым в этой поэме, прямо противопоставлены друг другу. Их основные свойства были уже намечены в лирике Лермонтова и его ранних поэмах. Царский опричник Кирибеевич — продолжение романтического героя-индивидуалиста, не признающего для себя никаких нравственных запретов и готового принести в жертву своим страстям честь и достоинство других людей. Купец Калашников выражает народное начало, он продолжает линию лермонтовских героев-мстителей. Калашников дорог поэту не только как борец против неправды и произвола. Не менее дорога его нравственная стойкость, внутренняя убежденность в своей правоте. С ним связано представление о твердых нравственных устоях, народной традиции. Он одерживает моральную победу над своим противником.

Еще недавно Кирибеевич, обнаруживающий к сильной любви и во имя страстного чувства нарушающий общепринятые нормы, мог оказаться в центре поэмы как высокий романтический герой. Теперь концепция Лермонтова заметно меняется. Байронический герой-индивидуалист развенчивается. В образе Кирибеевича есть свое поэтическое обаяние, он даже не лишен угрызений совести, но у Лермонтова он прямо противопоставлен Калашникову как носителю народного сознания и, несомненно, уступает ему в нравственном отношении. В конце поэмы говорится о поклонении народа могиле Калашникова, но не Кирибеевича, хотя погиб и он.

Важное место в системе образов поэмы занимает Иван Грозный. Он дан в духе народных представлений, зафиксированных во многих фольклорных произведениях, в которых отмечалось соединение в характере царя черт справедливости и вместе с тем деспотизма. Так проявляется важнейший идейно-эстетический принцип Лермонтова: он смотрит на своих героев глазами народа, подвергает их контролю и суду с позиций народных представлений о долге, чести и нравственности. Естественно, что в такой поэме Лермонтов широко использовал систему изобразительных средств, присущих народно-поэтическому творчеству.

 Но в «Песне про купца Калашникова» нет прямого, буквального заимствования из каких-то определенных фольклорных текстов. Лермонтов творчески использует народную поэзию, свободно переплавляя ее в соответствии со своим замыслом. Мир устного народного творчества органически входил в художественный мир Лермонтова. «Песня…» была опубликована анонимно (ссыльный поэт не мог подписать ее своей фамилией). Белинский уже в первом своем отзыве на поэму сразу же отметил появление нового таланта в русской поэзии: «Не знаем автора этой песни, но не боимся попасть в лживые предсказатели, сказавши, что наша литература приобретает сильное и самобытное дарование».

4,5(24 оценок)
Ответ:
historican
historican
14.09.2022
решения системы подстановки алгебраического сложения.

Алгоритмы и примеры решения системы уравнений:

Алгоритм решения системы линейных уравнений подстановки:

1. Выбрать одно уравнение (лучше выбирать то, где числа меньше) и выразить из него одну переменную через другую, например, Х через У. (можно и У через Х) . 2. Полученное выражение подставить вместо соответствующей переменной в другое уравнение. Таким образом, у нас получится линейное уравнение с одной неизвестной. 3. Решаем полученное линейное уравнение и получаем решение. 4. Подставляем полученное решение в выражение, полученное в первом пункте, получаем вторую неизвестную из решения. 5. Выполнить проверку полученного решения.

Пример

Решить систему уравнений: {Х+2*У =12{2*Х-3*У=-18

Решение: 1. Из первого уравнения данной системы выражаем переменную Х. Имеем Х= (12 -2*У) ; 2. Подставляем это выражение во второе уравнение, получаем 2*Х-3*У=-18; 2*(12 -2*У) – 3*У = -18; 24 – 4*У– 3*У = -18;

3. Решаем полученное линейное равнение: 24 – 4У – 3*У =-18; 24-7*У =-18; -7*У = -42; У=6;

4. Подставляем полученный результат в выражение, полученное в первом пункте. Х= (12 -2*У) ; Х=12-2*6 = 0; Х=0;

5. Проверяем полученное решение, для этого подставляем найденные числа в исходную систему. {Х+2*У=12;{2*Х-3*У=-18;{0+2*6 =12;{2*0-3*6=-18;{12 =12;{-18=-18;

Получили верные равенства, следовательно, мы правильно нашли решение.

ответ: (0,6)

Алгоритм решения алгебраического сложения

Алгоритм решения системы линейных уравнений с двумя неизвестными сложения.

1. Если требуется, путем равносильных преобразований уравнять коэффициенты при одной из неизвестных переменных в обоих уравнениях. 2. Складывая или вычитая полученные уравнения получить линейное уравнение с одним неизвестным 3. Решить полученное уравнение с одним неизвестным и найти одну из переменных. 4. Подставить полученное выражение в любое из двух уравнений системы и решить это уравнение, получив, таким образом, вторую переменную. 5. Сделать проверку решения.

Пример решения алгебраического сложения

Для большей наглядности решим сложения следующую систему линейных уравнений с двумя неизвестными:

{3*Х + 2*У = 10;{5*Х + 3*У = 12;

Так как, одинаковых коэффициентов нет ни у одной из переменных, уравняем коэффициенты у переменной у.

Для этого умножим первое уравнение на три, а второе уравнение на два.

{3*Х+2*У=10 |*3{5*Х + 3*У = 12 |*2

Получим следующую систему уравнений: {9*Х+6*У = 30;{10*Х+6*У=24;

Теперь из второго уравнения вычитаем первое.

Приводим подобные слагаемые и решаем полученное линейное уравнение. 10*Х+6*У – (9*Х+6*У) = 24-30; Х=-6;

Полученное значение подставляем в первое уравнение из нашей исходной системы и решаем получившееся уравнение. {3*(-6) + 2*У =10;{2*У=28; У =14;

Получилась пара чисел Х=6 и У=14.

Проводим проверку.

Делаем подстановку. {3*Х + 2*У = 10;{5*Х + 3*У = 12;{3*(-6) + 2*(14) = 10;{5*(-6) + 3*(14) = 12;{10 = 10;{12=12;

Как видите, получились два верных равенства, следовательно, мы нашли верное решение. ответ: (6, 14)

4,5(36 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ