Решение: 1) пусть х кг - вес третьего слитка, у кг - вес меди в третьем слитке. по условию в 1-ом слитке 30% меди, тогда 5·0,3 = 1,5 (кг) - чистой меди в первом слитке. по условию во 2-ом слитке тоже 30% меди, тогда 3·0,3 = 0,9 (кг) - чистой меди во втором слитке. 2) если первый слиток сплавили с третьим, то вес получившегося слитка равен (5 + х) кг, а количество в нём меди - (1,5 + у) кг. по условию содержание меди при этом получилось равным 56%. составим уравнение:3) если второй слиток сплавить с третьим, то вес получившегося слитка равен (3 + х) кг, а количество в нём меди - (0,9 + у) кг. по условию содержание меди при этом получилось равным 60%. составим уравнение:4) составим и решим систему уравнений:сложив почленно обе части уравнения, получим, что 10 кг - вес третьего слитка6,9 кг меди в третьем слитке 5) найдём процентное содержание меди в третьем слитке: % меди в третьем слитке. ответ: 69 %.
1. а) (а - 5) (а - 3) = a^2 - 3a - 5a + 15 = a^2 - 8a + 15;
б) (5х + 4) (2х - 1) = 10x^2 - 5x + 8x - 4 = 10x^2 + 3x - 4;
в) (3р + 2с) (2р + 4с) = 6p^2 + 12pc + 4cp + 8c^2 = 6p^2 + 16pc + 8c^2;
г) (6 - 2) (b^2 + 2b - 3) = 4 (b^2 + 2b - 3) = 4b^2 + 8b - 12.
2. а) х (х - у) + а (х - у) = (x - y)(x + a);
б) 2а - 2b + са - сb = 2(a - b) + c(a - b) = (2 + c)(a - b).
3. 0,5х (4х^2 - 1) (5х^2 + 2) = (2x^2 - 0,5x)(5x^2 + 2) = 10x^5 + 4x^3 - 2,5x^3 - x = 10x^5 + 1,5x^3 - x;
4. а) 2а - ас - 2с + с^2 = a(2 - c) - c(2 - c) = (2 - c)(a - c);
6) bx + by - х - у - ах - ау = b(x + y) - (x + y) -a(x + y) = (x + y)(b - a - 1).
5. Ширина - а м;
Длина - а + 6 м;
а + 0,5 * 2 = а + 1 м - ширина бассейна вместе с дорожкой;
а + 6 + 0,5 * 2 = а + 7 - длина бассейна вместе с дорожкой;
(а + 1) * (а + 7) - а * (а + 6) = 15;
а^2 + a + 7a + 7 - a^2 - 6a = 15;
2a + 7 = 15;
2a = 8;
a = 4 м - ширина;
4 + 6 = 10 м - длина.
Объяснение: