М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Алісія
Алісія
28.07.2020 16:51 •  Алгебра

Сколько существует натуральных x, y, z, удовлетворяющих уравнению НОК(x;y;z)=315?

👇
Ответ:
Akimneznaet123
Akimneznaet123
28.07.2020

ответ: 931

Объяснение:

1. Заметим, что 315 имеет следующее разложение на простые множители:

315=32⋅5⋅7,

отсюда следует, что числа x, y, z состоят из тех же простых чисел 3, 5, 7:

 x=3a1⋅5a2⋅7a3;

 y=3b1⋅5b2⋅7b3;

 z=3c1⋅5c2⋅7c3.

При этом  

 0≤a1,b1,c1≤2;

 0≤a2,b2,c2≤1;

 0≤a3,b3,c3≤1.

 2. По правилу нахождения наименьшего общего кратного получим

НОК(3a1⋅5a2⋅7a3;3b1⋅5b2⋅7b3;3c1⋅5c2⋅7c3)=3max(a1,b1,c1)⋅5max(a2,b2,c2)⋅7max(a3,b3,c3).

 3. Итак, задача свелась к нахождению числа решений системы уравнений:

 

⎧⎩⎨⎪⎪max(a1,b1,c1)=2;max(a2,b2,c2)=1;max(a3,b3,c3)=1.

Так как каждое уравнение содержит разные неизвестные, то для того чтобы найти количество решений системы, нужно найти количество решений каждого из уравнений и перемножить полученные значения.

 4.  Начнём с первого уравнения. Требуется найти количество целых неотрицательных чисел a1,b1,c1, удовлетворяющих уравнению max(a1,b1,c1)=2.

 Напомним, что 0≤a1,b1,c1≤2. Отсюда следует, что тройка чисел a1,b1,c1 является решением уравнения, если хотя бы одно из чисел a1,b1,c1 равно 2. Для того чтобы посчитать число таких троек, вычтем из количества всевозможных троек чисел a1,b1,c1 с условием 0≤a1,b1,c1≤2 (таких троек ровно 33=27 штук) число троек a1,b1,c1 с условием 0≤a1,b1,c1≤2, в которых 2 ни разу не встречается (таких троек ровно 23=8 штук). Отсюда находим, что первое уравнение системы имеет 27−8=19 решений.

5. Точно так же поступим при подсчёте числа решений второго уравнения системы. Требуется найти количество целых неотрицательных чисел a2,b2,c2, удовлетворяющих уравнению max(a2,b2,c3)=1.

Напомним, что  0≤a2,b2,c2≤1.

Тройка чисел a2,b2,c2 является решением уравнения, если хотя бы одно из чисел  a2,b2,c2 равно 1. Но только одна тройка чисел a2,b2,c2 не удовлетворяет этому условию, это тройка a2=b2=c3=0. Все остальные тройки хотя бы одну 1 содержат. Поскольку троек чисел a2,b2,c2 с условием 0≤a2,b2,c2≤1 ровно 23=8 штук, то второе уравнение системы имеет 8−1=7 решений. Точно так же получаем, что и третье уравнение системы имеет 7 решений.

 6. Для того чтобы подсчитать число решений системы, а значит, и исходного уравнения, остаётся перемножить полученные нами числа. Имеем

 19⋅7⋅7=931.

Итак, исходное уравнение имеет ровно 931 решение.

 Правильный ответ: 931 решение.

4,7(24 оценок)
Открыть все ответы
Ответ:
LarzMarz
LarzMarz
28.07.2020

( 8  * ( 12 + 18 ) ) : ( 3 - 2 )

Объяснение:

Можно увеличить значение выражения, если умножить 8 на наибольшее число. Но также благодаря делению мы можем уменьшить значение, поэтому сразу делить - плохая идея. Стоит заметить, что в конце стоит -2, и поэтому мы сможем разделить на наименьшее из возможных чисел (ну, кроме нуля, конечно), т.е на (3-2) = 1.

Итого получаем: (8*12+18):(3-2)

Выгодней будет поставить скобки так (8*(12+18)):(3-2), потому что 18 > 12, и увеличивая число, на которое мы умножаем, мы максимально увеличили произведение.

Мы максимально уменьшили делитель и максимально увеличили делимое, следовательно - (8*(12+18)):(3-2) - наибольший из возможных вариантов.

4,5(51 оценок)
Ответ:
natalykoposova
natalykoposova
28.07.2020
{ С + М = П + У
{ С + П = 6*(М + У)
Удав съел меньше всех
Пусть Удав съел 1 яблоко, а Мартышка 2, вместе 3, тогда Слоник и Попугай вместе съели 18 яблок, а все четверо 18 + 3 = 21 яблоко.
Пусть Удав съел 1 яблоко, а Мартышка 3, вместе 4, тогда Слоник и Попугай вместе съели 24 яблока, а все четверо 24 + 4 = 28 яблок.
Если Удав съел 2 яблока или больше, то все вместе съедят больше 30, а это невозможно.
Осталось рассмотреть 2 случая.
1) Удав съел 1 яблоко, а Мартышка 2.
С + 2 = П + 1
С + П = 18
Из 1 уравнения П = С + 1, тогда С + П = С + С + 1 = 2С + 1 = 18.
Слева нечетное число, а справа четное, это невозможно.
2) Удав съел 1 яблоко, а Мартышка 3.
С + 3 = П + 1
С + П = 24
Из 1 уравнения П = С + 2, тогда С + П = С + С + 2 = 2С + 2 = 24
С = 11
4,8(20 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ