Y'= (x^2-9x+9)' * e^(x-7) + (x^2-9x+9) * (e^(x-7))'= =(2x-9)*e^(x-7) + (x^2-9x+9)* e^(x-7)=e^(x-7)*(2x-9+x^2-9x+9)= =e^(x-7)*(x^2 -7x)=e^(x-7)*(x-7)*x. Приравняем в нулю. так как е в любой степени больше нуля, y'=0 при x=0 или x=7. отметим на координатной прямой эти точки 0 и 7 , проставим знаки + - + справа налево. Видно, что в точке х=0 производная меняет знак с + на минус, это точка максимума, в точке х=7 знак меняет с минуса не плюс, это точка минимума. Как раз это точка находится в заданном интервале. Подставим х=7 в исходную функцию у наим.=(7^2-9*7+9)*e^0=-5*1=-5
если b[1], b[2], b[3], .. - данная бесконечная убывающая геомметрическая прогрессия с знаменателем q, то
последовательность составленная из квадратов членов данной, тоже бессконечная убывающая c первым членом b[1] и знаменателем q^2
используя формулу суммы бесконечной убывающей прогрессии
b[1]/(1-q)=4
b[1]^2/(1-q^2)=48
откуда разделив соотвественно левые и правые части равенств, и используя формулу разности квадратов
b[1]^2/(1-q^2) :b[1]/(1-q)=48/4
b[1]/(1+q)=12
откуда
b[1]=12(1+q)=4(1-q)
12+12q=4-4q
12q+4q=4-12
16q=-8
q=-1/2
b[1]=4*(1-(-1/2))=4+2=6