В решении.
Объяснение:
Известно , что график функции y=k/x проходит через точку A(-4;-0,25). Проходит ли это график через точку:
а)B(-8;-0,125);
б)C(50;-0,02);
в)D(-40;-0,05)?
Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение. Если левая часть равна правой, то принадлежит, и наоборот.
1) Сначала нужно найти k, чтобы определить уравнение функции.
у=k/x
A(-4;-0,25)
Нужно в уравнение подставить известные значения (координаты точки А):
-0,25 = k/-4
k= (-0,25)*(-4)
k=1;
Уравнение функции имеет вид:
у = 1/х.
2) Теперь можно определять принадлежность точек графику:
а)B(-8;-0,125);
у=1/х
-0,125 = 1/-8
-0,125 = -0,125, проходит.
б)C(50;-0,02);
у=1/х
-0,02 = 1/50
-0,02 ≠ 0,02, не проходит.
в)D(-40;-0,05).
у=1/х
-0,05 = 1/-40
-0,05 ≠ -0,025, не проходит.
Объяснение:
1. a₁=-2 a₁₀=16 a₁₂=?
a₁₀=a₁+(10-1)*d=16
-2+9*d=16
9*d=18 |÷9
d=2 ⇒
a₁₂=a₁+(12-1)*d=-2+11*2=-2+22=20
ответ: а₁₂=20.
2. a₇=43 a₁₅=3 a₁₂=?
{a₇=a₁+6d=43
{a₁₅=a₁+14d=3
Вычитаем из нижнего уравнения верхнее:
8d=-40 |÷8
d=-5 ⇒
a₁+6*(-5)=43
a₁-30=43
a₁=73
a₁₂=73+11*(-5)=73-55=18
ответ: a₁₂=18.
3. a₁=30 d=-0,4 a₁₂=?
a₁₂=30+11*(-0,4)=30-4,4=25,6
ответ: a₁₂=25,6.
4. a₁₀=9,5 S₁₀=50 a₁₂=?
Sn=(a₁+an)*n/2
(a₁+9,5)*10/2=50
(a₁+9,5)*5=50 |÷5
a₁+9,5=10
a₁=0,5
a₁₀=a₁+9d=9,5
0,5+9d=9,5
9d=9 |÷9
d=1 ⇒
a₁₂=a₁+11d=0,5+11*1=0,5+11=11,5.
ответ: а₁₂=11,5.
2 сорта
Объяснение: