По формуле классической вероятности: p=m/n n=90 ( количество двузначных чисел)
Числа делящиеся на 3: 12; 15;... 99 - таких чисел 30 Можно найти их количество по формуле n-го члена арифметической прогрессии a₁=12 d=15-12=3 99=12+3·(n-1) ⇒87=3(n-1) n-1=29 n=30
Числа делящиеся на 5: 10; 15;20; 25; 30;...; 95 - таких чисел 30 Можно найти их количество по формуле n-го члена арифметической прогрессии a₁=10 d=15-10=5 95=10+5·(n-1) ⇒85=5(n-1) n-1=19 n=20
Чисел, которые одновременно делятся и на 3 и на 5 всего 6: 15;30;45;60;75 и 90
-x²-6x-7=x+3
x²+7x+10=0 D=9
x₁=-5 x₂=-2
S=₋₂∫⁻⁵(-x²-6x-7-x-3)dx=₋₂∫⁻⁵(-x²-7x-10)dx==(-x³/3-3,5x²-10x) ₋₂|⁻⁵= =(-(-5)³/3-3,5*(-5)²-10*(-5)-(-(-2)³/3-3,5*(-2)²-10*(-2)))=
=(125/3-87,5+50-(8/3-14+20))=(125/3-37,5-8/3-6)=(43,5-117/3)=(117/3-87/2)= =(117*2-87*3)/6=(234-261)/6=(-27/6)=-9/2=|-4,5|=4,5.
ответ: S=4,5 кв. ед.
y=-x²-6x-11 y=-x+3
-x²+6x-11=-x+3
x²-7x+14=0 D=-7 ⇒ уравнение не имеет действительных корней ⇒
графики y=-x²-6x-11 и y=-x+3 не пересекаются.