Убедимся, что данное дифференциальное уравнение является однородным.
То есть, воспользуемся условием однородности Итак, данное дифференциальное уравнение является однородным.
Однородное дифференциальное уравнение сводится к уравнению с разделяющимися переменными относительно новой неизвестной функции с замены: , тогда
По определению дифференциала, получаем - уравнение с разделяющимися переменными. Разделим переменные. - уравнение с разделёнными переменными.
Проинтегрируем обе части уравнения - общий интеграл новой функции.
Таким образом, определив функцию из решения уравнения с разделяющимися переменными, чтобы записать решение исходного однородного уравнения, остаётся выполнить обратную замену:
То есть,
- общий интеграл исходного уравнения. Остаётся определить значение произвольной постоянной . Подставим в общий интеграл начальное условие:
- частный интеграл, также является решением данного дифференциального уравнения.
Убедимся, что данное дифференциальное уравнение является однородным.
То есть, воспользуемся условием однородности Итак, данное дифференциальное уравнение является однородным.
Однородное дифференциальное уравнение сводится к уравнению с разделяющимися переменными относительно новой неизвестной функции с замены: , тогда
По определению дифференциала, получаем - уравнение с разделяющимися переменными. Разделим переменные. - уравнение с разделёнными переменными.
Проинтегрируем обе части уравнения - общий интеграл новой функции.
Таким образом, определив функцию из решения уравнения с разделяющимися переменными, чтобы записать решение исходного однородного уравнения, остаётся выполнить обратную замену:
То есть,
- общий интеграл исходного уравнения. Остаётся определить значение произвольной постоянной . Подставим в общий интеграл начальное условие:
- частный интеграл, также является решением данного дифференциального уравнения.
1)x=-пи\2 +2пик, где к целое число
2)х=пи\4 +2пик, где к целое число
3)х=7пи\6 +2пик, где к целое число
4)х=5пи\6+ 2пик, где к целое число
дальше по анологии