Это все простые числа: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 Это 15 чисел, но каждое равно просто самому себе, потому что они простые и делятся только на 1 и на себя. 1 - это не простое число. Все составные числа больше, чем сумма их простых делителей. Например, делители 10 и 20: 2 и 5, 2+5 = 7. 34: 2 и 17, 2+17 = 19. Если считать 1 простым числом, тогда число только одно: 6 = 1+2+3 - это так называемое совершенное число. До 50 есть еще одно совершенное число 28 = 1+2+4+7+14, но у него не все делители - простые. ответ: если 1 - не простое число, то 15 чисел. Если 1 - простое число, то одно число 6.
1. xn=2n-1;
n=1; x1=2*1-1=2-1=1;
n=2; x2=2*2-1=4-1=3;
n=3; x3=2*3-1=6-1=5;
n=4; x4=2*4-1=8-1=7;
n=5; x5=2*5-1=10-1=9.
***
2. xn=n²+1;
n=1; x1=1²+1=2;
n=2; x2=2²+1=5;
n=3; x3=3²+1=10;
n=4; x4=4²+1=17;
n=5; x5=5²+1=26.
***
3. xn=1/(n+1);
n=1; x1=1/(1+1)=1/2;
n=2; x2=1/(2+1)=1/3;
n=3; x3=1/(3+1)=1/4;
n=4; x4=1/(4+1)=1/5;
n=5; x5=1/(5+1)=1/6.
***
4. xn=(-1)^n;
n=1; x1=(-1)^1=-1;
n=2; x2=(-1)^2=1;
n=3; x3=(-1)^3=-1;
n=4; x4=(-1)^4=1;
n=5; x5=(-1)^5=-1.
Объяснение:
1. xn=2n-1;
n=1; x1=2*1-1=2-1=1;
n=2; x2=2*2-1=4-1=3;
n=3; x3=2*3-1=6-1=5;
n=4; x4=2*4-1=8-1=7;
n=5; x5=2*5-1=10-1=9.
***
2. xn=n²+1;
n=1; x1=1²+1=2;
n=2; x2=2²+1=5;
n=3; x3=3²+1=10;
n=4; x4=4²+1=17;
n=5; x5=5²+1=26.
***
3. xn=1/(n+1);
n=1; x1=1/(1+1)=1/2;
n=2; x2=1/(2+1)=1/3;
n=3; x3=1/(3+1)=1/4;
n=4; x4=1/(4+1)=1/5;
n=5; x5=1/(5+1)=1/6.
***
4. xn=(-1)^n;
n=1; x1=(-1)^1=-1;
n=2; x2=(-1)^2=1;
n=3; x3=(-1)^3=-1;
n=4; x4=(-1)^4=1;
n=5; x5=(-1)^5=-1.