у = kx+b
A(5; 3)
B(-3; -1)
Подставим координаты точек А и В в уравнение прямой вместо х и у, но точек две, поэтому уравнений получим тоже два с двумя неизвестными k и b
Составим систему уравнений и решим её:
{5k+b=3
{-3k+b=-1
вычтем из верхнего уравнения нижнее, получим
8k+0=4
k = 2
подставим k=2 в любое уравнение системы, например, в верхнее, получим:
5*2 + b =3
10+b = 3
b = 7
Запишем уравнение прямой:
у = 2х+7, которая проходит через данные точки А и В.
Далее, просили уравнение прямой, которая
1) параллельная данной, а значит её коэффициент k одинаковые, т е k = 2 и
2) пересекает ось абсцисс в точке (-10; 0)
0 = 2*(-10) + b
0 = -20 + b
b = 20
y = kx+b
k= 2, b= 20
y = 2x+20 - искомая формула прямой
(х+2)*у=21 - 1 уравнение
4х+у=23 - 2 уравнение
1) Выражаем из второго уравнения y и подставляем его в первое уравнение.
(x+2)*(23-4x)=21
y=23-4x
2) Решаем первое уравнение:
(х+2)*(23-4х)=21
23х-4х^2+46-8х-21=0
-4х^2+15х+25=0
4х^2-15х-25=0
D=(-15)^2-4*4*(-25)=225+400=625
x1=5, x2=-1,25
3)При решении первого уравнения поличилось два корня: 5 и -1,25. Возьмём первый корень, чтобы подставить его во второе уравнение и найти у:
x=5
y=23-4*5=3
Таким образом, решением этой системы уравнений будет являться: (5;3).