2) дальше, мы имеем, что x+y=17 подставим во второе уравнение:
xy-9*17+81=2 xy-153+81=2 xy=74
3)дальше, берем в систему x+y=17 и xy=74
потом, по методу подставление, находим из первого или второго уравнения переменную и подставляем во второе уравнениея из первого уравнения нашел x, x=17-y, и подставил во второе:
(17-y)y=74 17y-y^2=74 соберем все в одну сторону
y^2-17y+74=0
находим дискриминант: Д=17^2-4*74=-7
дискриминант отрицателен, значит нет решения. ответ пустое множество.
Пусть:
1-й насос х+2-время(час)
2-й насос 3(х+2)-время(час)
3-й насос х-время(час)
Тогда:
производительность 1-го насоса= 1/х+2
производительность 2-го насоса =1/3(х+2)
производительность 3го насоса=1/х
Уравнение:
1/(х+2)+1/3(х+2)+1/х=1/3
(1/3-общая производительность насосов за 3 часа)
потом, посчитав получим х=6(время наполнения бассейна третьим насосом), следовательно время первого=8ч, а второго=24ч.
минимальное время работы 2-ух насосов=14ч.
ну и осталось определить минимальную стоимость наполнения бассейна 2-мя насосами т.е. 140*14=1960(руб.)
ответ: 1960 руб.